K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 7

C =(a - b - c)\(^2\) - a\(^2\) - b\(^2\) - c\(^2\)

C = (a\(^{}\) - b)\(^2\) - 2(a -b)c + c\(^2\) - a\(^2\) - b\(^2\) - \(c^2\)

C = a\(^2\) - 2ab + b\(^2\) - 2ac + 2bc + c\(^2\) - \(a^2\) - \(b^2-c^2\)

C = (a\(^2\) - a\(^2\))+(\(b^2\) - b\(^2\))+(c\(^2\) - \(c^2\))-2ab - 2ac + 2bc

C = 0 + 0 + 0 - 2ab - 2ac + 2bc

C = -2ab - 2ac + 2bc

25 tháng 1 2019

1.

a + b + c = 0 \(\Rightarrow\)a = - ( b + c ) \(\Rightarrow\)a2 = [ -( b + c ) ]2 \(\Rightarrow\)a2 = b2 + c2 + 2bc

Tương tự : b2 = a2 + c2 + 2ac ; c2 = a2 + b2 + 2ab

a + b + c = 0 \(\Rightarrow\)a3 + b3 + c3 = 3abc  ( chứng minh )

Ta có : \(A=\frac{a^2}{b^2+c^2+2bc-b^2-c^2}+\frac{b^2}{a^2+c^2+2ac-a^2-c^2}+\frac{c^2}{a^2+b^2+2ab-a^2-b^2}\)

\(A=\frac{a^2}{2bc}+\frac{b^2}{2ac}+\frac{c^2}{2ab}\)

\(A=\frac{a^3+b^3+c^3}{2abc}=\frac{3abc}{2abc}=\frac{3}{2}\)

2. quy đồng mà giải

26 tháng 1 2019

tại sao a+b+c=0 lại suy ra đc \(a^3+b^3+c^3=3abc\)

10 tháng 1 2016

\(a+b+c=0\) 

\(\Leftrightarrow a^3+b^3+c^3=3abc \)

\(\Leftrightarrow\frac{a^3+b^3+c^3}{abc}=\frac{3abc}{abc}\left(abc\ne0\right)\)

\(\Leftrightarrow A=\frac{a^2}{bc}+\frac{b^2}{ca}+\frac{c^2}{ab}=3\)

10 tháng 1 2016

\(a.\)  Chú ý rằng nếu  \(a+b+c=0\) thì  \(a^3+b^3+c^3=0\)

Thật vậy, ta có:  \(a+b+c=0\)  \(\Rightarrow\)  \(c=-\left(a+b\right)\)

Do đó:   \(a^3+b^3+c^3=a^3+b^3+\left[-\left(a+b\right)\right]^3=-3a^2b-3ab^2=-3ab\left(a+b\right)=3abc\)

Áp dụng nhận xét trên, ta có:

\(A=\frac{a^2}{bc}+\frac{b^2}{ca}+\frac{c^2}{ab}=\frac{a^3}{abc}+\frac{b^3}{abc}+\frac{c^3}{abc}=\frac{1}{abc}\left(a^3+b^3+c^3\right)=\frac{1}{abc}.3abc=3\) với  \(a,b,c\ne0\)

5 tháng 11 2016

a) \(\frac{\left(a+b\right)^2-c^2}{a+b+c}=\frac{\left(a+b+c\right)\left(a+b-c\right)}{a+b+c}=a+b-c\)

b ) \(\frac{a^2+b^2-c^2+2ab}{a^2-b^2+c^2+2ac}=\frac{a^2+2ab+b^2-c^2}{a^2+ac+c^2-b^2}\)

\(=\frac{\left(a+b\right)^2-c^2}{\left(a+c\right)^2-b^2}=\frac{\left(a+b+c\right)\left(a+b-c\right)}{\left(a+c+b\right)\left(a+c-b\right)}=\frac{a+b-c}{a-b+c}\)

31 tháng 7 2017

Ta có: a+b+c=0 \(\Rightarrow\)-a=b+c

\(\frac{a^2}{a^2-b^2-c^2}=\frac{a^2}{a^2-\left(b+c\right)^2+2bc}=\frac{a^2}{2bc}\left(1\right)\)( vì b+c=-a)

Tương tự: \(\frac{b^2}{b^2-c^2-a^2}=\frac{b^2}{2ac}\left(2\right)\)

                \(\frac{c^2}{c^2-a^2-b^2}=\frac{c^2}{2ab}\left(3\right)\)

Từ 1,2 và 3 suy ra \(A=\frac{a^2}{2bc}+\frac{b^2}{2ac}+\frac{c^2}{2ab}=\frac{a^3+b^3+c^3}{2abc}\)

Dễ dàng chứng minh với a+b+c=0 thì \(a^3+b^3+c^3=3abc\)( bạn phân tích thành nhân tử sẽ ra, có gì kết bạn với mik)

Do đó \(A=\frac{3}{2}\)

24 tháng 11 2018

a) Đặt \(A=\frac{\left(a+b\right)^2-c^2}{a+b+c}=\frac{\left(a+b\right)^2}{a+b}-\frac{c^2}{c}=a+b-c\)

b)Đặt \(B=\frac{a^2+b^2-c^2+2ab}{a^2-b^2+c^2+2ac}=\frac{\left(a+b\right)^2-c^2}{\left(a+c\right)^2-b^2}=\frac{a+b-c}{a+c-b}\)

24 tháng 11 2018

Auto giải thích thêm câu b) (để tránh bị các thành phần spammer bắt bẻ)

\(\frac{\left(a+b\right)^2-c^2}{\left(a+c\right)^2-b^2}=\frac{a+b-c}{a+c-b}\) vì:

\(\frac{\left(a+b\right)^2-c^2}{\left(a+c\right)^2-b^2}=\frac{\left[\left(a+b\right)-c\right]\left[\left(a+b\right)+c\right]}{\left[\left(a+c\right)-b\right]\left[\left(a+c\right)+b\right]}=\frac{a+b-c}{a+c-b}\)

25 tháng 11 2016

a ) \(\frac{\left(a+b\right)^2-c^2}{a+b+c}=\frac{\left(a+b+c\right)\left(a+b-c\right)}{a+b+c}=a+b-c\)

b ) \(\frac{a^2+b^2-c^2+2ab}{a^2-b^2+c^2+2ac}=\frac{a^2+2ab+b^2-c^2}{a^2+2ac+c^2-b^2}\)

\(=\frac{\left(a+b\right)^2-c^2}{\left(a+c\right)^2-b^2}=\frac{\left(a+b+c\right)\left(a+b-c\right)}{\left(a+c+b\right)\left(a+c-b\right)}=\frac{a+b-c}{a-b+c}\)

25 tháng 11 2016

a) \(\frac{\left(a+b\right)^2-c^2}{a+b+c}=\frac{\left(a+b+c\right)\left(a+b-c\right)}{a+b+c}=a+b-c\)

b) \(\frac{a^2+b^2-c^2+2ab}{a^2-b^2+c^2+2ac}=\frac{\left(a^2+2ab+b^2\right)-c^2}{\left(a^2+2ac+c^2\right)-b^2}=\frac{\left(a+b\right)^2-c^2}{\left(a+c\right)^2-b^2}=\frac{\left(a+b+c\right)\left(a+b-c\right)}{\left(a+c+b\right)\left(a+c-b\right)}=\frac{a+b-c}{a+c-b}\)

17 tháng 10 2017

Rút gọn cái j?