Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Điểm \(A\left( {20;10} \right);B\left( {22;11} \right);C\left( {24;12} \right);D\left( {26;13} \right);E\left( {28;14} \right);D\left( {30;15} \right)\)
Ta thấy mỗi cặp giá trị \(x;y\) tương ứng trong bảng là tọa độ của các điểm \(A;B;C;D;E;F\).
a) Ta có $f(-4)=\frac{4}{-4}=-1$; $f(8)=\frac{4}{8}=\frac{1}{2}$.
b)
x | -2 | -1 | 2 | 3 | $\frac{1}{2}$ |
y = f(x) | -2 | -4 | 2 | $\frac{4}{3}$ | 8 |
Đồ thị hàm số là tập hợp các điểm có tọa độ \(\left( { - 2;2} \right);\left( { - 1;1} \right);\left( {0;0} \right);\left( {1; - 1} \right);\left( {2; - 2} \right)\) được vẽ trên mặt phẳng tọa độ như hình dưới đây:
a) Dùng trong công cụ để kiểm tra DE, ta thấy độ dài đoạn thẳng DE bằng 4 cm.
b) Lưu hình vẽ ở HĐ3 thành tệp hth.png.Vào Hồ sơ → Chọn Xuất bản → Chọn PNG image (.png).
Trên màn hình hiện lên cửa sổ như sau:Ta đổi tên tệp thành hbh (như hình vẽ), sau đó chọn xuất bản.
c) Vẽ hình thang cân ADEC có AD // EC, AD = 6 cm, CE = 4 cm, AC = DE = 3 cm theo các bước sau:
Bước 1. Vẽ đoạn thẳng AB và có độ dài bằng AD – EC = 2 cm tương tự như Bước 1 của HĐ1.
Bước 2. Vẽ tam giác ABC có BC = 3 cm (độ dài của DE), AC = 3 cm.
Chọn công cụ → Chọn → Nháy chuột vào điểm A, nhập bán kính bằng 3.
Chọn công cụ → Chọn → Nháy chuột vào điểm B, nhập bán kính bằng 3.
Chọn công cụ → Chọn → Lần lượt nháy chuột vào hai đường tròn vừa vẽ, ta được 2 giao điểm, chọn 1 điểm là điểm C.
Chọn công cụ → Chọn → Chọn điểm A → Chọn điểm C.
Chọn công cụ → Chọn → Chọn điểm B → Chọn điểm C.
Bước 3. Vẽ điểm D nằm trên tia AB sao cho AD = 6 cm.Chọn công cụ → Chọn → Nháy chuột vào điểm A, nhập bán kính bằng 6.
Chọn công cụ → Chọn → Nháy chuột lần lượt vào các điểm A, B.
Chọn công cụ → Chọn → Lần lượt nháy chuột vào tia AB và đường tròn vừa vẽ, ta được điểm D.
Bước 4. Vẽ điểm E sao cho DE // BC và CE // AB.
Chọn công cụ → Chọn → Nháy chuột vào điểm C → Nháy chuột vào đoạn thẳng AB.
Chọn công cụ → Chọn → Nháy chuột vào điểm D → Nháy chuột vào đoạn thẳng CB.
Chọn công cụ → Chọn → Lần lượt nháy chuột vào đường thẳng vừa vẽ.
Ẩn các đường tròn, các đường thẳng, đoạn thẳng AB, BC và điểm B. Chọn công cụ để nối A với D, D với E, E với C và thu được hình thang cân ADEC thỏa mãn yêu cầu đề bài.
a) Dùng trong công cụ để kiểm tra trung điểm AC và BD, ta thấy trung điểm AC và BD trùng nhau.
b) Lưu hình vẽ ở HĐ2 thành tệp hbh.png.
Vào Hồ sơ → Chọn Xuất bản → Chọn PNG image (.png).
Trên màn hình hiện lên cửa sổ như sau:Ta đổi tên tệp thành hbh (như hình vẽ), sau đó chọn xuất bản.
c) Tương tự, ta vẽ một hình thoi ABCD có cạnh 4 cm theo các bước sau:Bước 1. Vẽ đoạn thẳng AB và có độ dài 4 cm tương tự như Bước 1 của HĐ1.
Bước 2. Vẽ điểm C sao cho BC = 4 cm.
Chọn công cụ → Chọn → Nháy chuột vào điểm B, nhập bán kính bằng 4.
Chọn công cụ → Chọn → Chọn điểm C bất kỳ nằm trên đường tròn tâm B.
Chọn công cụ → Chọn → Nháy chuột vào điểm C, nhập bán kính bằng 4.
Chọn công cụ → Chọn → Lần lượt nháy chuột đường tròn tâm A và đường tròn C.
Chọn công cụ để nối B với C, C với D, D với A.
Bước 3. Ẩn đường tròn và thu được hình thoi ABCD.
a) Bảng a đại lượng \(y\) là hàm số của đại lượng \(x\) vì với mỗi giá trị của \(x\) ta chỉ nhận được duy nhất một giá trị tương ứng của \(y\).
b) Bảng b đại lượng \(y\) không là hàm số của đại lượng \(x\) vì có những giá trị của \(x\) cho ta hai giá trị \(y\).
Với \(x = 2\) cho ta hai giá trị \(y\) là \(y = \dfrac{1}{2}\) và \(y = \dfrac{1}{3}\).
Đại lượng y là hàm số của đại lượng x. Bởi vì với mỗi giá trị của x chỉ tìm được duy nhất một giá trị tương ứng của y
a) f(x) = 70 ⇒ x = 30
b) f(x) = 95 ⇒ x = 55
c) f(x) = 0 ⇒ x = −40
a) Đại lượng y là hàm số của x vì với mỗi giá trị của x (thuộc tập hợp {-3; -1; 0; 2; 4}) ta luôn xác định được chỉ một giá trị tương ứng của y (y luôn bằng 1).
b) Đại lượng y không là hàm số của x vì với x = 1 ta xác định được hai giá trị tương ứng của y là y = 1 và y = 2.