Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Tìm được BH=9cm, CH=16cm, AB=15cm, và AC=20cm
b, Tìm được A M H ^ ≈ 73 , 74 0
c, S A H M = 21 c m 2
AM = 5 => BC = 10
Dung py ta go tính ra AB
Tính các góc còn lại nhờ 3 cạnh vừa tính dùng hàm cos ; sin gì đó
GIẢI:
a) Chứng minh tam giác CKH đồng dạng tam giác BCA
AKC^ + ABC^ = 2v => AKCH nội tiếp
=> CHK^ = CAB^ (1) ( cùng chắn cung CK)
CKH^ = CAH^ (2) ( cùng chắn cung CH)
CAH^ = ABC^ (3) ( so le trong)
(2) và (3) => CKH^ = ACB^ (4)
(1) và (4) => ΔCKH ~ ΔBCA (g.g)
b) Chứng minh HK=AC.sinBAD
ΔCKH ~ ΔBCA =>HK/AC = CH/AB = CH/CD = sin(CDH^) = sin(BAD^) ( đồng vị)
=> HK = AC.sin(BAD^)
c) Tính diện tích tứ giác AKCH nếu góc BAD = 60 độ, AB=4cm, AD=5cm
AB = CD = 4
CDH^ = BAD^ = 60*
=> CH = 4√3/2 = 2√3 ( đường cao tam giác đều cạnh = 4)
DH = CD/2 = 4/2 = 2
=> AH = AD + DH = 5 + 2 = 7
AD = BC = 5
CBK^ = BAD^ = 60*
=> CK = 5.√3/2
BK = BC/2 = 5/2
=> AK = AB + BK = 4 + 5/2 = 13/2
S(AKCH) = S(ACK) + S(ACH) = AK.CK/2 + AH.CH/2
= (13/2).( 5.√3/2)/2 + 7.(2√3)/2 = 732√3/8
chúc bạn học tốt
Câu 1:
Sửa đề: AC=3cm
Xét ΔABC vuông tại A có \(cosC=\dfrac{CA}{CB}\)
=>\(CB=\dfrac{CA}{cosC}=\dfrac{3}{cos60}=6\)(cm)
ΔABC vuông tại A có AD là đường trung tuyến
nên \(AD=\dfrac{CB}{2}=3\left(cm\right)\)
Câu 3:
ABCD là hình bình hành
=>\(\widehat{B}+\widehat{C}=180^0\)
mà \(\widehat{B}=\widehat{C}\)
nên \(\widehat{B}=\widehat{C}=\dfrac{180^0}{2}=90^0\)
Hình bình hành ABCD có \(\widehat{B}=90^0\)
nên ABCD là hình chữ nhật
=>\(S_{ABCD}=AB\cdot BC=5\cdot4=20\left(cm^2\right)\)