K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 1

3\(x\) = 5y; \(x+y=40\)

3\(x\) = 5y suy ra: \(x=\frac53\)y thay vào \(x+y=40\) ta được:

\(\frac53y+y=40\)

8y = 120

y = \(\frac{120}{8}\)

y = 15 thay vào \(x=\frac53y\) ta được \(x=\) \(\frac53\times15=25\)

Vậy (\(x;y\) ) = (25; 15)

18 tháng 7 2017

1. -2x=5y =>\(\frac{x}{y}=\frac{-5}{2}=>y=\frac{-2x}{5}\)

Thế y=\(\frac{-2x}{5}\) ta được:

x+\(\frac{-2x}{5}\)=30     \(\Rightarrow\frac{5x-2x}{5}=30\)

\(\Rightarrow3x=150\)\(\Rightarrow x=50\)

=>y=30-x=30-50=-20.

Vậy x=50; y=-20.

Những bài khác tương tự bạn nhé!

5 tháng 11 2017

bạn kia làm đúng rồi

k tui nha 

thank

24 tháng 7 2017

a) Ta có : \(\frac{x-1}{2}=\frac{y+3}{4}\Leftrightarrow\left(x-1\right).4=\left(y+3\right).2\Leftrightarrow4x-4=2y+6\Leftrightarrow4x-2y=10\Leftrightarrow x=\frac{10+2y}{4}\left(1\right)\)

 \(\frac{y+3}{4}=\frac{z-5}{6}\Leftrightarrow\left(y+3\right).6=\left(z-5\right).4\Leftrightarrow6y+18=4z-20\Leftrightarrow6y-4z=-38\Rightarrow z=\frac{6y+38}{4}\left(2\right)\)Thay (1) và (2) vào biểu thức \(5x-3y-4z=20\); ta được : 

\(\frac{5.\left(10+2y\right)}{4}-3y-\frac{4.\left(6y+38\right)}{4}=20\)

\(\Leftrightarrow50+10y-12y-24y-152=80\)

\(\Leftrightarrow-26y=182\Rightarrow y=-7\)

Với \(y=-7\Rightarrow x=\frac{10+2.-7}{4}=-1;z=\frac{6.-7+38}{4}=-1\)

Vậy .... 

24 tháng 7 2017

mk ko bt 

bạn cute quá ; 

tặng bạn , tk mk nhé ; 

Hình ảnh có liên quan

18 tháng 7 2017

1/ Ta có: -2x = 5y \(\Rightarrow\dfrac{x}{5}=\dfrac{y}{-2}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{5}=\dfrac{y}{-2}=\dfrac{x+y}{5+\left(-2\right)}=\dfrac{30}{3}=10\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{5}=10\\\dfrac{y}{-2}=10\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=10.5=50\\y=10.\left(-2\right)-20\end{matrix}\right.\)

Vậy x = 50; y = -20.

2/ Ta có: 3x = 5y \(\Rightarrow\dfrac{x}{5}=\dfrac{y}{3}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{5}=\dfrac{y}{3}=\dfrac{x+y}{5+3}=\dfrac{40}{8}=5\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{5}=5\\\dfrac{y}{3}=5\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=5.5=25\\y=5.3=15\end{matrix}\right.\)

Vậy x = 25; y = 15.

3/ Ta có: 4x = 5y \(\Rightarrow\dfrac{x}{5}=\dfrac{y}{4}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{3x}{15}=\dfrac{2y}{8}=\dfrac{3x-2y}{15-8}=\dfrac{35}{7}=5\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{5}=5\\\dfrac{y}{4}=5\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=5.5=25\\y=5.4=20\end{matrix}\right.\)

Vậy x = 25; y = 20.

4/ Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{2}=\dfrac{y}{-5}=\dfrac{x-y}{2-\left(-5\right)}=\dfrac{7}{7}=1\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{2}=1\\\dfrac{y}{-5}=1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=2\\y=-5\end{matrix}\right.\)

Vậy x = 2; y = -5.

5/ Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{2x}{38}=\dfrac{y}{21}=\dfrac{2x-y}{38-21}=\dfrac{34}{17}=2\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{19}=2\\\dfrac{y}{21}=2\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=2.19=38\\y=2.21=42\end{matrix}\right.\)

Vậy x = 38; y = 42.

18 tháng 7 2017

\(-2x=5y\Rightarrow\dfrac{x}{5}=\dfrac{y}{-2}\)

Dựa vào tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{5}=\dfrac{y}{-2}=\dfrac{x+y}{5+-2}=\dfrac{30}{3}=10\)

\(\Rightarrow\left\{{}\begin{matrix}x=10.5=50\\y=10.-2=-20\end{matrix}\right.\)

\(3x=5y\Rightarrow\dfrac{x}{5}=\dfrac{y}{3}\)

Dựa vào tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{5}=\dfrac{y}{3}=\dfrac{x+y}{5+3}=\dfrac{40}{8}=5\)

\(\Rightarrow\left\{{}\begin{matrix}x=5.5=25\\y=5.3=15\end{matrix}\right.\)

\(4x=5y\Rightarrow\dfrac{x}{5}=\dfrac{y}{4}\Rightarrow\dfrac{3x}{15}=\dfrac{2y}{8}\)

Dựa vào tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{3x}{15}=\dfrac{2y}{8}=\dfrac{3x-2y}{15-8}=\dfrac{35}{7}=5\)

\(\Rightarrow\left\{{}\begin{matrix}x=5.5=25\\y=5.4=20\end{matrix}\right.\)

\(x:2=y:\left(-5\right)\Rightarrow\dfrac{x}{2}=\dfrac{y}{-5}\)

Dựa vào tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{2}=\dfrac{y}{-5}=\dfrac{x-y}{2-\left(-5\right)}=\dfrac{7}{7}=1\)

\(\Rightarrow\left\{{}\begin{matrix}x=1.2=2\\y=1.\left(-5\right)=-5\end{matrix}\right.\)

\(\dfrac{x}{19}=\dfrac{y}{21}\Rightarrow\dfrac{2x}{38}=\dfrac{y}{21}\)

Dựa vào tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{2x}{38}=\dfrac{y}{21}=\dfrac{2x-y}{38-21}=\dfrac{34}{17}=2\)

\(\Rightarrow\left\{{}\begin{matrix}x=2.19=38\\y=2.21=42\end{matrix}\right.\)

2 tháng 9 2018

Áp dụng tính chất dãy tỉ số bằng nhau

\(\frac{x}{5}=\frac{y}{7}=\frac{z}{9}=\frac{x-y+z}{5-7+9}=\frac{315}{7}=45\)

  suy ra:   x/5 = 45   =>  x  =  225

               y/7 = 45  =>  y  =  315

               z/9 = 45  =>  z  =  405

25 tháng 9 2018

\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=k\)

suy ra:  \(x=2k;\)\(y=3k;\)\(z=4k\)

Ta có:   \(x^2+y^2+z^2=116\)

<=>  \(\left(2k\right)^2+\left(3k\right)^2+\left(4k\right)^2=116\)

<=>  \(29k^2=116\)

<=>  \(k^2=4\)

<=>  \(k=\pm2\)

tự làm nốt

11 tháng 7 2019

\(3x=2y\Rightarrow\frac{x}{2}=\frac{y}{3}\)

\(7y=5z\Rightarrow\frac{y}{5}=\frac{z}{7}\)

\(\hept{\begin{cases}\frac{x}{2}=\frac{x}{3}\\\frac{y}{5}=\frac{x}{7}\end{cases}\Rightarrow}\frac{x}{2}=\frac{5y}{15};\frac{3y}{15}=\frac{z}{7}\)

\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)

Áp dụng tính chát dãy tỉ số = nhau ta có:

\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x-y+z}{10-15+21}=\frac{32}{16}=2\)

\(\Rightarrow\frac{x}{10}=2\Rightarrow x=20\)

\(\frac{y}{15}=2\Rightarrow y=30\)

\(\frac{z}{21}=3\Rightarrow z=63\)

11 tháng 7 2019

b, Tự làm

c, \(5x=2y\Leftrightarrow\frac{x}{2}=\frac{y}{5}\)

\(2x=3z\Leftrightarrow\frac{x}{3}=\frac{z}{2}\)

\(\Leftrightarrow\frac{x}{2}=\frac{y}{5};\frac{x}{3}=\frac{z}{2}\)

\(\Leftrightarrow\frac{x}{6}=\frac{y}{15}=\frac{x}{6}=\frac{z}{10}\)

\(\Leftrightarrow\frac{x}{6}=\frac{y}{15}=\frac{z}{10}\)

Đặt \(\frac{x}{6}=\frac{y}{15}=\frac{z}{10}=k(k\inℤ)\)

\(\Leftrightarrow\hept{\begin{cases}x=6k\\y=15k\\z=10k\end{cases}}\)

\(\Leftrightarrow x\cdot y=6k\cdot15k=90\)

\(\Leftrightarrow90:k^2=90\Leftrightarrow k^2=1\Leftrightarrow k=\pm1\)

\(\Leftrightarrow\hept{\begin{cases}x=6k\\y=15k\\z=10k\end{cases}}\Leftrightarrow\hept{\begin{cases}x=6\\y=15\\z=10\end{cases}}\)hay \(\hept{\begin{cases}x=-6\\y=-15\\z=-10\end{cases}}\)

Vậy \((x,y)\in(6,15);(-6,-15)\)

5 tháng 1 2021

Đặt \(\frac{x}{-5}=\frac{y}{6}=\frac{z}{-2}=k\)  \(\left(k\ne0\right)\)

\(\Rightarrow x=-5k;y=6k;z=-2k\)

\(\Rightarrow A=\frac{3.k.\left(-5\right)+6.k-2.\left(-2\right).k}{-3.\left(-5\right).k-5.6.k+6.\left(-2\right).k}=\frac{-15k+6k+4k}{15k-30k-12k}=\frac{-5k}{-27k}=\frac{5}{27}\)

Vậy \(A=\frac{5}{27}\).

13 tháng 8 2019

a) Ta có : \(\frac{x}{y}=\frac{2}{3}\) => \(\frac{x}{2}=\frac{y}{3}\) => \(\frac{2x}{4}=\frac{3y}{9}\)

Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

  \(\frac{2x}{4}=\frac{3y}{9}=\frac{2x+3y}{4+9}=\frac{208}{13}=16\)

=> \(\hept{\begin{cases}\frac{x}{2}=16\\\frac{y}{3}=16\end{cases}}\) => \(\hept{\begin{cases}x=16.2=32\\y=16.3=48\end{cases}}\)

Vậy ...

b) \(\frac{3}{x}=\frac{4}{y}\) => \(\frac{x}{3}=\frac{y}{4}\)=> \(\frac{-3x}{-9}=\frac{5y}{20}\)

Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

        \(\frac{-3x}{-9}=\frac{5y}{20}=\frac{-3x+5y}{-9+20}=\frac{33}{11}=3\)

=> \(\hept{\begin{cases}\frac{x}{3}=3\\\frac{y}{4}=3\end{cases}}\) => \(\hept{\begin{cases}x=3.3=9\\y=3.4=12\end{cases}}\)

Vậy ...

13 tháng 8 2019

a) \(\text{Ta có : }\frac{x}{y}=\frac{2}{3}\Leftrightarrow\frac{x}{2}=\frac{y}{3}\Leftrightarrow\frac{2x}{4}=\frac{3y}{9}\)

\(\text{Áp dụng tính chất dãy tỉ số bằng nhau ta có :}\frac{2x}{4}=\frac{3y}{9}=\frac{2x+3y}{4+9}=\frac{208}{13}=16\)

\(\Rightarrow\frac{2x}{4}=16\Rightarrow2x=64\Rightarrow x=32\)

\(\Rightarrow\frac{3y}{9}=16\Rightarrow3y=144\Rightarrow y=48\)

\(\text{Vậy }x=32;y=48\)

b) \(\text{Ta có : }\frac{3}{x}=\frac{4}{y}\Leftrightarrow\frac{y}{4}=\frac{x}{3}\Leftrightarrow\frac{5x}{20}=-\frac{3x}{-9}\)

\(\text{Áp dụng tính chất dãy tỉ số bằng nhau ta có : }\frac{5x}{20}=\frac{-3x}{-9}=\frac{5y+\left(-3x\right)}{20+\left(-9\right)}=\frac{33}{11}=3\)

\(\text{Nếu }\frac{-3x}{-9}=3\Rightarrow-3x=-27\Rightarrow x=9\)

\(\text{Nếu}\frac{5y}{20}=3\Rightarrow5y=60\Rightarrow y=12\)

\(\text{Vậy}x=9;y=12\)

c) \(\text{Ta có : }8x=5y\Rightarrow\frac{x}{5}=\frac{y}{8}\Leftrightarrow\frac{2x}{10}=\frac{y}{8}\)

\(\text{Áp dụng tính chất dãy tỉ số bằng nhau ta có :}\frac{2x}{10}=\frac{y}{8}=\frac{y-2x}{10-8}=\frac{-10}{2}=-5\)

\(\text{Nếu }\frac{2x}{10}=-5\Rightarrow2x=-50\Rightarrow x=-25\)

\(\text{Nếu }\frac{y}{8}=-5\Rightarrow y=-40\)

\(\text{Vậy}x=-25;y=-40\)

6 tháng 7 2018

a )  

Ta có : 

\(\hept{\begin{cases}\frac{x}{5}=\frac{y}{6}\\\frac{y}{8}=\frac{z}{7}\end{cases}\Rightarrow\hept{\begin{cases}\frac{x}{20}=\frac{y}{24}\\\frac{y}{24}=\frac{z}{21}\end{cases}}}\)

và \(x+y-z=69\)

ADTCDTSBN , ta có : 

\(\frac{x}{20}=\frac{y}{24}=\frac{z}{21}=\frac{x+y-z}{20+24-21}=\frac{69}{23}=3\)

\(\Rightarrow\hept{\begin{cases}\frac{x}{20}=3\\\frac{y}{24}=3\\\frac{z}{21}=3\end{cases}\Rightarrow\hept{\begin{cases}x=3.20=60\\y=3.24=72\\z=3.21=63\end{cases}}}\)

Vậy ...

b )  

Ta có : 

\(5y=72\Rightarrow y=\frac{72}{5}=14,4\)

\(\Rightarrow x=14,4.3:2=21,6\)

và \(3x+5y-7z=30\)

Thay vào làm tiếp : 

c ) 

\(\frac{x-1}{2}=\frac{y+3}{4}=\frac{z-5}{6}\)

\(=\frac{3\left(x-1\right)}{6}=\frac{4\left(y+3\right)}{16}=\frac{5\left(z-5\right)}{30}\)

\(=\frac{3x-3}{6}=\frac{4y+12}{16}=\frac{5z-25}{30}\)

\(=\frac{5z-25-\left(3x-3\right)-\left(4y+12\right)}{30-6-16}\)( ADTCDTSBN ) 

\(=\frac{5z-25-3x+3-4y-12}{8}=\frac{5z-3x-4y-34}{8}\)

\(=\frac{50-34}{8}=\frac{16}{8}=2\)

\(\Rightarrow\hept{\begin{cases}\frac{x-1}{2}=2\\\frac{y+3}{4}=2\\\frac{z-5}{6}=2\end{cases}\Rightarrow\hept{\begin{cases}x-1=2.2=4\\y+3=2.4=8\\z-5=2.6=12\end{cases}\Rightarrow}\hept{\begin{cases}x=5\\y=5\\z=17\end{cases}}}\)

Vậy ...

2 tháng 9 2018

Áp dụng tính chất dãy tỉ số bằng nhau

\(\frac{x}{5}=\frac{y}{7}=\frac{z}{9}=\frac{x-y+z}{5-7+9}=\frac{315}{7}=45\)

  suy ra:   x/5 = 45   =>  x  =  225

               y/7 = 45  =>  y  =  315

               z/9 = 45  =>  z  =  405

25 tháng 9 2018

\(3x=y\)=>  \(\frac{x}{1}=\frac{y}{3}\)

hay  \(\frac{x}{4}=\frac{y}{12}\)

\(5y=4z\)=>  \(\frac{y}{4}=\frac{z}{5}\)

hay  \(\frac{y}{12}=\frac{z}{15}\)

suy ra:   \(\frac{x}{4}=\frac{y}{12}=\frac{z}{15}\)

đến đây bạn ADTCDTSBN nhé

28 tháng 12 2016

Giải:

Ta có: \(3x=5y\Rightarrow\frac{x}{5}=\frac{y}{3}\)

Đặt \(\frac{x}{5}=\frac{y}{3}=k\)

\(\Rightarrow x=5k;y=3k\)

\(xy=60\)

\(\Rightarrow5k3k=60\)

\(\Rightarrow15k^2=60\)

\(\Rightarrow k^2=4\)

\(\Rightarrow k=\pm2\)

+) \(k=2\Rightarrow a=10;b=6\)

+) \(k=-2\Rightarrow a=-10;b=-6\)

- Nếu x, y là số dương thì:

\(D=\sqrt{\left(x-y\right)\left(x+y\right)}=\sqrt{\left(10-6\right)\left(10+6\right)}\)

\(=\sqrt{4.16}=\sqrt{64}=8\)

- Nếu x, y là số âm thì:

\(D=\sqrt{\left(x-y\right)\left(x+y\right)}=\sqrt{\left(-10+6\right)\left(-10-6\right)}\)

\(=\sqrt{\left(-4\right)\left(-16\right)}=\sqrt{64}=8\)

Vậy D = 8 khi x, y cùng dấu

28 tháng 12 2016

giả sử 3x-5y chỗ này là sao