Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a) Áp dụng các công thức trong hệ thức lượng trong tam giác vuông đối với:
Tam giác $ABC$ vuông tại $A$, đường cao $AH$: $\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}=\frac{1}{m^2}+\frac{1}{n^2}$
$\Rightarrow AH^2=\frac{m^2n^2}{m^2+n^2}$
Tam giác $AHC$ vuông tại $H$ đường cao $HE$: $AH^2=AE.AC$
$\Leftrightarrow \frac{m^2n^2}{m^2+n^2}=AE.n\Rightarrow AE=\frac{m^2n}{m^2+n^2}$
Hoàn toàn tương tự: $AF=\frac{mn^2}{m^2+n^2}$
b) Đề đúng phải là: $EF^3=AE.BC.AF$
Xét tứ giác $AEHF$ có 3 góc vuông nên $AEHF$ là hình chữ nhật.
$\Rightarrow EF=AH\Rightarrow EF^3=AH^3(*)$
Mặt khác:
Theo phần a: $AH^2=AE.AC=AF.AB$
$\Rightarrow AH^4=AE.AF.AB.AC=AE.AF.2S_{ABC}=AE.AF.AH.BC$
$\Leftrightarrow AH^3=AE.AF.BC(**)$
Từ $(*); (**)\Rightarrow EF^3=AE.AF.BC$ (đpcm)
c)
Áp dụng hệ thức lượng trong tam giác vuông với tam giác $ABC$, đường cao $AH$ và tam giác vuoogn $AHC$ đường cao $HE$:
$BF.\sqrt{CH}+CE.\sqrt{BH}=AH.\sqrt{BC}$
$\Leftrightarrow BF.\sqrt{CH.CB}+CE.\sqrt{BH.BC}=AH.BC$
$\Leftrightarrow BF. \sqrt{AC^2}+CE.\sqrt{AB^2}=AH.BC$
$\Leftrightarrow BF.AC+CE.AB=AH.BC$
$\Leftrightarrow (BA-AF)AC+CE.AB=AH.BC$
$\Leftrightarrow AF.AC=CE.AB$
$\Leftrightarrow $AF.AC=\frac{HE^2}{AE}.AB$
$\Leftrightarrow AF.AC=\frac{AF^2}{AE}.AB$
$\Leftrightarrow AE.AC=AF.AB$ (luôn đúng vì cùng bằng $AH^2$)
Vậy........
a, Ta có : \(\widehat{DMC}\) = \(\widehat{B} + \widehat{BDM}\)
Xét \(\bigtriangleup{DMB}\) và \(\bigtriangleup{MCE}\) , có :
\(\widehat{DME} = \widehat{B}\)
\(\widehat{BDM} = \widehat{EMC}\)
\(\Rightarrow\) \(\bigtriangleup{DMB}\) ~ \(\bigtriangleup{MCE}\) (g.g)
\(\Rightarrow\) \(\dfrac{DB}{BM} = \dfrac{MC}{EC} <=> BD.CE = BM . MC = a^2\) (đpcm)
b, Vì \(\bigtriangleup{DBM} \) \(\sim \) \(\bigtriangleup{MCE} <=> \dfrac{DM}{ME} = \dfrac{BD}{CM}\)
hay \(\dfrac{DM}{ME}= \dfrac{BD}{BM} \)
\(\Rightarrow\) \(\bigtriangleup{DME} \sim \bigtriangleup{DMB}\)
\(\Rightarrow\) \(\widehat{MDE} = \widehat{BDM} \)
\(\Rightarrow\) DM là tia phân giác của \(\widehat{BDE}\) (đpcm)
Ta có : \(\dfrac{MN}{BC} = \dfrac{AK}{AH} \)
Gợi MN = \(x\) , ta có :
\(\dfrac{x}{a} = \dfrac{h-x}{h}\)
Từ đó \(\Rightarrow\) \(hx = ah - ax\)
\(\Leftrightarrow\) \(x = \dfrac{ah}{a+h}\)
Ta có : MP = MN\(\sqrt{2}\)
\(\Rightarrow\) MP = \(\dfrac{\sqrt{2}ah}{a+h}\)
Xét \(\bigtriangleup{ABE}\) vuông tại A có AG \(\perp BE = \) {G}
Áp dụng hệ thức \(c^2 = a . c'\)
\(\Leftrightarrow\) \(AB^2 = BE . BG\)
Vì AD \(\cap BE \) = {G}
\(\Rightarrow\) BG = \(\dfrac{2}{3}\) BE ( tính chất)
\(\Rightarrow\) AB = BE . \(\dfrac{2}{3}\) BE
\(\Leftrightarrow\) \(\sqrt{6}^2\) = \(BE ^2 . \dfrac{2}{3} \)
\(\Leftrightarrow\) 6 = \(\dfrac{2}{3}\) . \(BE^2 \)
\(\Leftrightarrow\) \(BE^2=9 = (\pm 3)^2 \)
Vì\( BE >0 \)
\(\Rightarrow\) \(BE= 3\)
Áp dụng định lý Py-ta-go , có:
\(BE^2 = AB^2+AE^2 \)
\(\Leftrightarrow\) \(3^2 = \sqrt{6^2} + AE ^2\)
\(\Leftrightarrow\) \(9=6+AE^2\)
\(\Leftrightarrow\) \(AE^2 = 3\)
\(\Rightarrow\)\(AE = \sqrt{3}\)
Ta có : AE . EC = AC
\(\Leftrightarrow\) \(\sqrt{3} . \sqrt{3} = AC \)
\(\Leftrightarrow\) AC = \(2\sqrt{3}\)
Áp dụng định lý Py-ta-go , có :
\(BC^2 =AB^2+AC^2 \)
\(\Leftrightarrow\) \(BC^2 = \sqrt{6^2} +(2\sqrt{3})^2\)
\(\Leftrightarrow\) \(BC^2 = 6+12 \)
\(\Leftrightarrow\) \(BC^2 = 18\)
\(\Rightarrow\) \(BC = \sqrt{18} = 2\sqrt{3}\)
Ta có : SinC = \(\dfrac{AB}{AC}\) = \(\dfrac{\sqrt{6}}{3\sqrt{2}}\) = \(\dfrac{\sqrt{3}}{3}\)
\(\Rightarrow\)\(\widehat{C} \) \(\approx 35 ^0\)
\(\Rightarrow\) \(\widehat{B} \approx 90^0 - 35^0=55^0\)
a: \(\dfrac{EB}{FC}=\dfrac{BH^2}{BA}:\dfrac{CH^2}{AC}\)
\(=\dfrac{BH^2}{AB}\cdot\dfrac{AC}{CH^2}=\dfrac{AB^4}{AC^4}\cdot\dfrac{AC}{AB}=\dfrac{AB^3}{AC^3}\)
b: \(HE=\sqrt{16\cdot9}=12\left(cm\right)\)
\(AH=\sqrt{16\cdot25}=20\left(cm\right)\)
△ ABC△ABC vuông tại A , AH⊥BCAH⊥BC , HE⊥ABHE⊥AB , HF⊥AC(E∈HB,F∈AC)HF⊥AC(E∈HB,F∈AC) . Chứng minh rằng : AE .AB = AE . AC ( sửa đề : AE . AB = AC . AF )
(Tự vẽ hình )
Xét \(\bigtriangleup{ AHB}\) vuông tại H có \(HE \perp AB\)
Áp dụng hệ thức \(b^2 = a.b'\)
\(\Leftrightarrow\) \(AH^2 = AB . AE \) (1)
Xét \(\bigtriangleup{AHC}\) vuông tại H có \(HF \perp AC \)
Áp dụng hệ thức \(c^2=a.c'\)
\(\Leftrightarrow\) \(AH^2 = AC .AF\) (2)
Từ (1) và (2) \(\Rightarrow\) AB . AE = AC . AF (đpcm)
Nguyễn Huyền Trâm mơn bn