Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Áp dụng HTL => \(AE.AB=AH^2\)và \(AF.AC=AH^2\)
<=> Ta lần lượt có \(AE.m=AH^2\)và \(AF.n=AH^2\)
Tiếp tục áp dụng HTL => \(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}\)=> \(\frac{1}{AH^2}=\frac{1}{m^2}+\frac{1}{n^2}=\frac{\left(m^2+n^2\right)}{m^2n^2}\)
<=> \(AH^2=\frac{\left(m^2n^2\right)}{m^2+n^2}\)
=> AE.m=\(\frac{m^2n^2}{m^2+n^2}\)và AF.n=\(\frac{m^2n^2}{m^2+n^2}\)
=> AE; AF=......
b) Lần lượt áp dụng các HTL, ta có:
\(BE.AE=HE^2\); \(AF.CF=HF^2\)
<=> \(BE.CF.AE.AF=\left(HE.HF\right)^2\)
Do tứ giác AEHF có 3 góc vuông => AEHF là HCN => HE=AF; HF=AE; AH=EF
<=> \(BE.CF.BC=AE.AF.BC\) \(=\frac{AE.AF.BC.AH}{AH}\)\(=\frac{AE.AB.AF.AC}{AH}\)(HTL)\(=\frac{AH^2.AH^2}{AH}=AH^3=EF^3\)(Lại Áp dụng HTL)
=> \(BC.CF.BC=EF^3\left(đpcm\right)\)
a) Để tính AC, ta sử dụng định lý Pythagoras trong tam giác vuông: AC^2 = AB^2 + BC^2. Với AB = 12cm và BC = 20cm, ta có: AC^2 = 12^2 + 20^2 = 144 + 400 = 544. Do đó, AC = √544 ≈ 23.32cm.
Để tính góc B, ta sử dụng công thức sin(B) = BC/AC. Với BC = 20cm và AC = 23.32cm, ta có: sin(B) = 20/23.32 ≈ 0.857. Từ đó, góc B ≈ arcsin(0.857) ≈ 58.62°.
Để tính AH, ta sử dụng công thức cos(B) = AH/AC. Với góc B ≈ 58.62° và AC = 23.32cm, ta có: cos(B) = AH/23.32. Từ đó, AH = 23.32 * cos(58.62°) ≈ 11.39cm.
b) Ta cần chứng minh AE.AC = AB^2 - HB^2. Vì ΔABC vuông tại A, ta có: AE = AB * sin(B) (theo định lý sin trong tam giác vuông) AC = AB * cos(B) (theo định lý cos trong tam giác vuông) HB = AB * sin(B) (theo định lý sin trong tam giác vuông)
Thay các giá trị vào biểu thức cần chứng minh: AE.AC = (AB * sin(B)) * (AB * cos(B)) = AB^2 * sin(B) * cos(B) = AB^2 * (sin(B) * cos(B)) = AB^2 * (sin^2(B) / sin(B)) = AB^2 * (1 - sin^2(B)) = AB^2 * (1 - (sin(B))^2) = AB^2 * (1 - (HB/AB)^2) = AB^2 - HB^2
Vậy, ta đã chứng minh AE.AC = AB^2 - HB^2.
c) Ta cần chứng minh AF = AE * tan(B). Vì ΔABC vuông tại A, ta có: AE = AB * sin(B) (theo định lý sin trong tam giác vuông) AF = AB * cos(B) (theo định lý cos trong tam giác vuông)
Thay các giá trị vào biểu thức cần chứng minh: AF = AB * cos(B) = AB * (cos(B) / sin(B)) * sin(B) = (AB * cos(B) / sin(B)) * sin(B) = AE * sin(B) = AE * tan(B)
Vậy, ta đã chứng minh AF = AE * tan(B).
d) Ta cần chứng minh tỉ lệ giữa các đường cao trong tam giác vuông ΔABC. CE/BF = AC/AB
Vì ΔABC vuông tại A, ta có: CE = AC * cos(B) (theo định lý cos trong tam giác vuông) BF = AB * cos(B) (theo định lý cos trong tam giác vuông)
Thay các giá trị vào biểu thức cần chứng minh: CE/BF = (AC * cos(B)) / (AB * cos(B)) = AC/AB
Vậy, ta đã chứng minh CE/BF = AC/AB.
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AH^2=BH\cdot CH\)
\(\Leftrightarrow AH^2=9\cdot16=144\)
hay AH=12(cm)
Xét tứ giác ADHE có
\(\widehat{EAD}=90^0\)
\(\widehat{ADH}=90^0\)
\(\widehat{AEH}=90^0\)
Do đó: ADHE là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)
Suy ra: AH=DE(Hai đường chéo)
mà AH=12(cm)
nên DE=12cm
a: Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC
nên \(AH^2=HB\cdot HC\left(1\right)\)
Xét ΔABH vuông tại H có HE là đường cao ứng với cạnh huyền AB
nên \(AH^2=AE\cdot AB\left(2\right)\)
Xét ΔACH vuông tại H có HF là đường cao ứng với cạnh huyền AC
nên \(AH^2=AF\cdot AC\left(3\right)\)
Từ (1), (2) và (3) suy ra \(AE\cdot AB=AF\cdot AC=BH\cdot HC\)
Gái xinh review app chất cho cả nhà đây: https://www.facebook.com/watch/?v=485078328966618 Link tải app: https://www.facebook.com/watch/?v=485078328966618
Lời giải:
a) Áp dụng các công thức trong hệ thức lượng trong tam giác vuông đối với:
Tam giác $ABC$ vuông tại $A$, đường cao $AH$: $\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}=\frac{1}{m^2}+\frac{1}{n^2}$
$\Rightarrow AH^2=\frac{m^2n^2}{m^2+n^2}$
Tam giác $AHC$ vuông tại $H$ đường cao $HE$: $AH^2=AE.AC$
$\Leftrightarrow \frac{m^2n^2}{m^2+n^2}=AE.n\Rightarrow AE=\frac{m^2n}{m^2+n^2}$
Hoàn toàn tương tự: $AF=\frac{mn^2}{m^2+n^2}$
b) Đề đúng phải là: $EF^3=AE.BC.AF$
Xét tứ giác $AEHF$ có 3 góc vuông nên $AEHF$ là hình chữ nhật.
$\Rightarrow EF=AH\Rightarrow EF^3=AH^3(*)$
Mặt khác:
Theo phần a: $AH^2=AE.AC=AF.AB$
$\Rightarrow AH^4=AE.AF.AB.AC=AE.AF.2S_{ABC}=AE.AF.AH.BC$
$\Leftrightarrow AH^3=AE.AF.BC(**)$
Từ $(*); (**)\Rightarrow EF^3=AE.AF.BC$ (đpcm)
c)
Áp dụng hệ thức lượng trong tam giác vuông với tam giác $ABC$, đường cao $AH$ và tam giác vuoogn $AHC$ đường cao $HE$:
$BF.\sqrt{CH}+CE.\sqrt{BH}=AH.\sqrt{BC}$
$\Leftrightarrow BF.\sqrt{CH.CB}+CE.\sqrt{BH.BC}=AH.BC$
$\Leftrightarrow BF. \sqrt{AC^2}+CE.\sqrt{AB^2}=AH.BC$
$\Leftrightarrow BF.AC+CE.AB=AH.BC$
$\Leftrightarrow (BA-AF)AC+CE.AB=AH.BC$
$\Leftrightarrow AF.AC=CE.AB$
$\Leftrightarrow $AF.AC=\frac{HE^2}{AE}.AB$
$\Leftrightarrow AF.AC=\frac{AF^2}{AE}.AB$
$\Leftrightarrow AE.AC=AF.AB$ (luôn đúng vì cùng bằng $AH^2$)
Vậy........
Hình vẽ: