\(\bigtriangleup{ABC} \) có hai góc nhọn B và C , BC = a , đường cao AH = h . Một h...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 8 2019

Ta có : \(\dfrac{MN}{BC} = \dfrac{AK}{AH} \)

Gợi MN = \(x\) , ta có :

\(\dfrac{x}{a} = \dfrac{h-x}{h}\)

Từ đó \(\Rightarrow\) \(hx = ah - ax\)

\(\Leftrightarrow\) \(x = \dfrac{ah}{a+h}\)

Ta có : MP = MN\(\sqrt{2}\)

\(\Rightarrow\) MP = \(\dfrac{\sqrt{2}ah}{a+h}\)

21 tháng 8 2019

Tự vẽ hình

Ta có : \(CA . CE = CD . CB\)

\(\Rightarrow\) \(\dfrac{CA}{CD} = \dfrac{CB}{CE}\)

Xét \(\bigtriangleup{CAD} \)\(\bigtriangleup{CBE}\) , có :

\(\widehat{BCE}\) : chung

\(\widehat{CDA} = \widehat{CBE} = 90 ^0\)

\(\Rightarrow\) \(\bigtriangleup{CAD}\) ~ \(\bigtriangleup{CBE}\) ( g.g)

\(\Rightarrow\) \(\dfrac{CA}{CB} = \dfrac{CD}{ CE}\)

\(\Rightarrow\) \(CA. CE = CB . CD\) (đpcm)

21 tháng 8 2019

b, Xét \(\bigtriangleup{AQC}\) vuông tại Q , có : \(QE \perp AD\)
Áp dụng hệ thức \(b^2 = a . b'\) , có :

\(\Leftrightarrow\) \(CQ^2 = CA . CE \) (1)

Xét \(\bigtriangleup{CPB}\) vuông tại P , có : \(PD \perp BC\)

Áp dụng hệ thức \(b^2= a . b'\)

\(\Leftrightarrow\) \(CP^2 = CB . CD \) (2)

\(CA . CE = CB . CD \) (cmt) (3)

Từ (1),(2) và (3) \(\Rightarrow\) \(CQ^2 = CP^2\)

\(\Rightarrow\) \(CQ = CP \) (đpcm)

23 tháng 8 2019

a, Ta có : \(\widehat{DMC}\) = \(\widehat{B} + \widehat{BDM}\)

Xét \(\bigtriangleup{DMB}\)\(\bigtriangleup{MCE}\) , có :

\(\widehat{DME} = \widehat{B}\)

\(\widehat{BDM} = \widehat{EMC}\)

\(\Rightarrow\) \(\bigtriangleup{DMB}\) ~ \(\bigtriangleup{MCE}\) (g.g)

\(\Rightarrow\) \(\dfrac{DB}{BM} = \dfrac{MC}{EC} <=> BD.CE = BM . MC = a^2\) (đpcm)

b, Vì \(\bigtriangleup{DBM} \) \(\sim \) \(\bigtriangleup{MCE} <=> \dfrac{DM}{ME} = \dfrac{BD}{CM}\)

hay \(\dfrac{DM}{ME}= \dfrac{BD}{BM} \)

\(\Rightarrow\) \(\bigtriangleup{DME} \sim \bigtriangleup{DMB}\)

\(\Rightarrow\) \(\widehat{MDE} = \widehat{BDM} \)

\(\Rightarrow\) DM là tia phân giác của \(\widehat{BDE}\) (đpcm)

17 tháng 8 2019

ABC△ABC vuông tại A , AHBCAH⊥BC , HEABHE⊥AB , HFAC(EHB,FAC)HF⊥AC(E∈HB,F∈AC) . Chứng minh rằng : AE .AB = AE . AC ( sửa đề : AE . AB = AC . AF )

(Tự vẽ hình )

Xét \(\bigtriangleup{ AHB}\) vuông tại H có \(HE \perp AB\)

Áp dụng hệ thức \(b^2 = a.b'\)

\(\Leftrightarrow\) \(AH^2 = AB . AE \) (1)

Xét \(\bigtriangleup{AHC}\) vuông tại H có \(HF \perp AC \)

Áp dụng hệ thức \(c^2=a.c'\)

\(\Leftrightarrow\) \(AH^2 = AC .AF\) (2)

Từ (1) và (2) \(\Rightarrow\) AB . AE = AC . AF (đpcm)

17 tháng 8 2019

Nguyễn Huyền Trâm mơn bn

a: Xét ΔAC'C vuông tại C' và ΔAB'B vuông tại B' có

góc C'AC chung

=>ΔAC'C đồng dạng với ΔAB'B

=>AC'/AB'=AC/AB

=>AC'*AB=AB'*AC(1)

b: Xét ΔANB vuông tại N có NC' vuông góc với AB

nên AC'*AB=AN^2(2)

Xét ΔAMC vuông tại M có MB' vuông góc với AC

nên AB'*AC=AM^2(3)

Từ (1), (2), (3) suy ra AN=AM

22 tháng 8 2019

Gợi N là trung điểm của MP

\(\Rightarrow\) \(\bigtriangleup{PMB}\) là tam giác đều

\(\dfrac{DN}{DP} = \dfrac{1}{2} \)

\(\widehat{DNE} = \widehat{DPC} = 150^0 \)

\(\dfrac{NE}{PC} = \dfrac{1}{2} \)

\(\Rightarrow\) \(\bigtriangleup{DNE} \) ~ \(\bigtriangleup{DPC}\) (c.g.c)

Ta có :

\(\widehat{END} = \widehat{CDP} \)

\(\dfrac{DE}{DC}= \dfrac{NE}{PC}= \dfrac{1}{2} \) (1)

Do \(\widehat{NDP} = 60^0 \) \(\Rightarrow\) \(\widehat{EDC} = 60^0\) (2)

Từ (1) và (2) \(\Rightarrow\) \(\widehat{DEC}=90^0\)

Vậy \(\widehat{DEC} = 90^0\)

\(\widehat{EDC}=60^0\)

\(\widehat{ECD} = 30^0\)

26 tháng 1 2018

mình hướng dẫn nhé

b) ta có: \(\widehat{ADB}\) là góc nội tiếp chắn nửa đường tròn 

\(\Rightarrow\widehat{ADB}=90^0\)

\(\Rightarrow AD\perp BC\)  là đường cao đồng thời là đường phân giác

\(\Rightarrow\widehat{BAD}=\widehat{CAD}=\frac{1}{2}\widehat{BAC}\)

ta lại có \(\widehat{DAE}=\widehat{EBD}\) cùng chắn cung \(DE\) nhỏ

\(\Rightarrow\widehat{CBE}=\frac{1}{2}\widehat{BAC}\)

26 tháng 1 2018

Ai làm được câu a chỉ mình với @@