K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1

Gọi d = ƯCLN(2n + 5; 3n + 7) (với d ∈N*)

\(\Rightarrow\hept{\begin{cases}2n+5⋮d\\3n+7⋮d\end{cases}}\)                       \(\Rightarrow\hept{\begin{cases}3\left(2n+5\right)⋮d\\2\left(3n+7\right)⋮d\end{cases}}\)       \(\Rightarrow\hept{\begin{cases}6n+15⋮d\\6n+14⋮d\end{cases}}\)

\(\text{⇒ (6n + 15) – (6n + 14) ⋮ d}\)

\(\text{⇒1 ⋮d}\)

\(\text{⇒d = 1}\)

Do đó: \(\text{ƯCLN(2n + 5; 3n + 7) = 1}\)

Vậy hai số \(\text{2n + 5 và 3n +7 }\)là hai số nguyên tố cùng nhau.

\(M=1+3+3^2+...+3^{100}\)

\(\Leftrightarrow M=1+3+\left(3^2+3^3+3^4\right)+\left(3^5+3^6+3^7\right)+...+\left(3^{98}+3^{99}+3^{100}\right)\)

\(\Leftrightarrow M=4+3^2+\left(1+3+3^2\right)+3^5+\left(1+3+3^2\right)+...+3^{98}\left(1+3+3^2\right)\)

\(\Leftrightarrow M=4+3^2.13+3^5.13+...+3^{98}.13\)

\(\Leftrightarrow M=4+13\left(3^2+3^5+...+3^{98}\right)\)

mà \(13\left(3^2+3^5+...+3^{98}\right)⋮13\)

\(4:13\left(dư4\right)\)

\(\Leftrightarrow M:13\left(dư4\right)\)

15 tháng 8 2023

a) \(9^{21}.9^{33}=9^{21+33}=9^{54}\)

b) \(19^{11}.19.19=19^{11+1+1}=19^{13}\)

c) \(25^2.5^2.125=5^4.5^2.5^3=5^{4+2+3}=5^9\)

d) \(t^{2021}.t^2.\left(t^2\right)^2=t^{2021}.t^2.t^4=t^{2021+2+4}=t^{2027}\)

e) \(123^{14}:123^{13}=123^{14-13}=123\)

f) \(64^2:8^3=\left(8^2\right)^2:8^3=8^4:8^3=8^{4-3}=8=2^3\)

g) \(6^{10}:6^3:36=6^{10}:6^3:6^2=6^{10-3-2}=6^5\)

h) \(m^{20}:m^{10}.m^{10}=m^{20-10+10}=m^{20}\)

27 tháng 8 2023

Bài 1 :

\(M=\dfrac{30-2^{20}}{2^{18}}=\dfrac{2.15-2^{20}}{2^{18}}=\dfrac{15}{2^{17}}-2^2=\dfrac{15}{2^{17}}-4< 0\left(\dfrac{15}{2^{17}}< 1\right)\)

\(N=\dfrac{3^5}{1^{2021}+2^3}=\dfrac{3^5}{9}=\dfrac{3^5}{3^2}=3^3=27\)

\(\Rightarrow M< N\)

27 tháng 8 2023

Bài 3 :

a) \(t^2+5t-8\) khi \(t=2\)

\(=5^2+2.5-8\)

\(=25+10-8\)

\(=27\)

b) \(\left(a+b\right)^2-\left(b-a\right)^3+2021\left(1\right)\)

\(\left\{{}\begin{matrix}a=5\\b=a+1=6\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a+b=11\\b-a=1\end{matrix}\right.\)

\(\left(1\right)=11^2-1^3+2021=121-1+2021=2141\)

c) \(x^3-3x^2y+3xy^2-y^3=\left(x-y\right)^3\left(1\right)\)

\(\left\{{}\begin{matrix}x=3\\y=2\end{matrix}\right.\) \(\Rightarrow x-y=1\)

\(\left(1\right)=1^3=1\)

4 tháng 8 2023

a) \(4^{13}+4^{14}+4^{15}+4^{16}=4^{13}\left(1+4\right)+4^{14}\left(1+4\right)=4^{13}.5+4^{14}.5=5\left(4^{13}+4^{14}\right)⋮5\Rightarrow dpcm\)

c) \(2^{10}+2^{11}+2^{12}+2^{13}+2^{14}+2^{15}\)

\(=2^{10}\left(1+2+2^2\right)+2^{13}\left(1+2+2^2\right)\)

\(=2^{10}.7+2^{13}.7=7\left(2^{10}+2^{13}\right)⋮7\Rightarrow dpcm\)

Câu c bạn xem lại đê

17 tháng 11 2021

con khong biet

26 tháng 12 2022

Sai hết :)

25 tháng 9 2019

1.

a) \(3^2\cdot2^5-\left(3\cdot6^2-x\right)=120\\ 9\cdot32-\left(3\cdot36-x\right)=120\\ 288-\left(108-x\right)=120\\ 288-108+x=120\\ 180+x=120\\ \Rightarrow x=-60\)

Vậy x = -60

b) \(\left(x+3\right)\cdot2^3-2^2\cdot5=2^2\cdot3^5\\ \left(x+3\right)\cdot8-4\cdot5=4\cdot243\\ \left(x+3\right)\cdot8-20=972\\ \Rightarrow8\left(x+3\right)=992\\ \Rightarrow x+3=124\\ \Rightarrow x=121\)

Vậy x = 121

2.

a) \(5^{x-1}-13=612\\ \Rightarrow5^{x-1}=625=5^3\\ \Rightarrow x-1=3\\ \Rightarrow x=4\)

Vậy x = 4

b) \(5^x\cdot5^3=125\\ 5^{x+3}=5^3\\ \Rightarrow x+3=3\\ \Rightarrow x=0\)

Vậy x = 0

25 tháng 9 2019

thanks bạn

12 tháng 8 2017

a, \(390-\left(x-7\right)=13^2:12\)

\(390-\left(x-7\right)=\) \(\dfrac{169}{12}\)

\(x-7=390-\dfrac{169}{12}\)

\(x-7=\dfrac{4511}{12}\)

\(x=\dfrac{4511}{12}+7\)

\(x=\dfrac{4595}{12}\)

Vậy ...

b, \(\left(x-35.2^2\right):7=3^3-24\)

\(\left(x-35.4\right):7=27-24\)

\(\left(x-140\right):7=3\)

\(\Leftrightarrow\left(x-140\right)=3.7\)

\(\Leftrightarrow x-140=21\)

\(\Leftrightarrow x=161\)

Vậy .....

c) \(x-6:2-\left(4^2.3-24\right):2:6=3\)

\(x-3-\left(16.3-24\right):2:6=3\)

\(x-3-\left(48-24\right):2:6=3\)

\(x-3-24:2:6=3\)

\(x-3-2=3\)

\(x=3+2+3\)

\(x=8\)

Vậy ......

d) \(4x-5=5+5^2+5^3+.....+5^{99}\)

Đặt :

\(A=5+5^2+.........+5^{99}\)

\(\Leftrightarrow5A=5^2+5^3+..........+5^{100}\)

\(\Leftrightarrow5A-A=\left(5^2+5^3+......+5^{100}\right)-\left(5+5^2+....+5^{99}\right)\)

\(\Leftrightarrow4A=5^{100}-5\)

\(\Leftrightarrow A=\dfrac{5^{100}-5}{4}\)

\(\Leftrightarrow4x+5=\dfrac{5^{100}-5}{4}\)

Đến đây thì sao nữa nhỉ ?

e) \(\left(2x-1\right)^4=625\)

\(\Leftrightarrow\left[{}\begin{matrix}\left(2x-1\right)^4=5\\\left(2x-1\right)^4=-5\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-1=5\\2x-1=-5\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)

Vậy ....