K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(2025^{2025}-1\)

\(=\left(2025-1\right)\left(2025^{2024}+2025^{2023}+...+1\right)\)

\(=2024\cdot\left(2025^{2024}+2025^{2023}+...+1\right)⋮2024\)

1 tháng 11 2018

a, an+3-an+1=an.a(a2-1)=an(a-1)a(a+1)

Vì (a-1)a(a+1) là tích 3 số tự nhiên liên tiếp

=> (a-1)a(a+1) chia hết cho 2 và 3

Mà (2,3)=1

=>(a-1)a(a+1) chia hết cho 6

=> an(a-1)a(a+1) chia hết cho 6 

=>đpcm

b, a3+5a=(a3-a)+6a=a(a2-1)+6a=(a-1)a(a+1)+6a

CM (a-1)a(a+1) chia hết cho 6

      6a chia hết cho 6

=>(a-1)a(a+1)+6a chia hết cho 6

=>đpcm

c, a3+b3+c3-a-b-c=(a3-a)+(b3-b)+(c3-c)

đến đây dễ rồi, tự làm

AH
Akai Haruma
Giáo viên
6 tháng 1 2024

Lời giải:
Ta thấy, với mọi $x,y,z$ là số thực thì:

$(x-y+z)^2\geq 0$

$\sqrt{y^4}\geq 0$

$|1-z^3|\geq 0$

$\Rightarrow (x-y+z)^2+\sqrt{y^4}+|1-z^3|\geq 0$ với mọi $x,y,z$

Kết hợp $(x-y+z)^2+\sqrt{y^4}+|1-z^3|\leq 0$

$\Rightarrow (x-y+z)^2+\sqrt{y^4}+|1-z^3|=0$

Điều này xảy ra khi: $x-y+z=y^4=1-z^3=0$

$\Leftrightarrow y=0; z=1; x=-1$

 

22 tháng 7 2018

Bài 4 :

Gọi các số đó là a,a+1,a+2,a+3.......,a+45

Ta có 

a+(a+1)+(a+2)+(a+3)+..........+(a+45)

46a+ (1+2+3+4+5+.........+45)

46a+1035

Ta thấy 46a chia hết cho 46 , 1035 không chia hết cho 46 

=> 46a +1035 không chia hết cho 46

Vậy 46 số tự nhiên liên tiếp không chia hết cho 46 

22 tháng 7 2018

Nếu n chia 5 dư 1, 3 thì n^2 chia 5 dư 1

=> n^2 + 4 chia hết cho 5

Nếu n chia 5 dư 2,4 thì n^2 chia 5 dư 4

=> n^2 + 1 chia hết cho 5

Nếu n chia hết cho 5

=> A chia hết cho 5

16 tháng 8 2015

TA CÓ :   2^3+4^3+...+18^3

             = 2(1^3+2^3+...+9^10)

             =2.2025

             =4050

23 tháng 1 2016

Ta có: 23+43+63+....+183

= 23.13+23.23+23.33+...+23.93

= 23.(13+23+33+...+93)

= 23.2025 = 8.2025 = 16200

8 tháng 8 2016

ta có : \(2^{33}\equiv8\)(mod31)

\(\left(2^{33}\right)^{11}=2^{363}\equiv8\)(mod31)

\(\left(2^{363}\right)^5=2^{1815}\equiv1\)(mod31)

\(\left(2^{33}\right)^6\equiv2^{198}\equiv8\)(mod31)

=> \(2^{1815}.2^{198}:2^2=2^{2011}\equiv1.8:4\equiv2\)(mod31)

vậy số dư pháp chia trên là 2