K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
6 tháng 1

Lời giải:
Ta thấy, với mọi $x,y,z$ là số thực thì:

$(x-y+z)^2\geq 0$

$\sqrt{y^4}\geq 0$

$|1-z^3|\geq 0$

$\Rightarrow (x-y+z)^2+\sqrt{y^4}+|1-z^3|\geq 0$ với mọi $x,y,z$

Kết hợp $(x-y+z)^2+\sqrt{y^4}+|1-z^3|\leq 0$

$\Rightarrow (x-y+z)^2+\sqrt{y^4}+|1-z^3|=0$

Điều này xảy ra khi: $x-y+z=y^4=1-z^3=0$

$\Leftrightarrow y=0; z=1; x=-1$

 

a: \(\left(2^3\right)^{1^{2005}}\cdot x+2005^0\cdot x=9915:3+1^{2025}\)

=>\(8\cdot x+1\cdot x=3305+1\)

=>\(9x=3306\)

=>\(x=\dfrac{3306}{9}=\dfrac{1102}{3}\)

b: \(2^x+2^{x+1}+2^{x+2}+2^{x+3}=480\)

=>\(2^x+2^x\cdot2+2^x\cdot4+2^x\cdot8=480\)

=>\(2^x\left(1+2+4+8\right)=480\)

=>\(2^x\cdot15=480\)

=>\(2^x=32\)

=>\(2^x=2^5\)

=>x+5

 

9 tháng 1

a, 2\(^3\) . x + 2005\(^0\) . x = 994-15:3+1\(^{2025}\) 

   8 .x + 1 . x = 990

x . [ 8 +1 ] = 990

x . 9 = 990

x = 990 : 9

x = 110

9 tháng 1

các bạn giúp mình với mình đang vội.

 

18 tháng 6 2019

\(\frac{2015}{2016}< \frac{2016}{2016}=1=\frac{2034}{2034}< \frac{2035}{2034}\)

\(\Rightarrow\frac{2015}{2016}< \frac{2035}{2034}\)

\(\frac{-2025}{2024}< \frac{-2024}{2024}=-1< \frac{-2026}{2027}\)

\(\Rightarrow\frac{-2025}{2024}< \frac{-2026}{2027}\)

18 tháng 6 2019

#)Giải :

a) Ta có :

\(1-\frac{2015}{2016}=\frac{1}{2016}\)

\(1-\frac{2035}{2036}=\frac{1}{2036}\)

Vì \(\frac{1}{2016}>\frac{1}{2036}\Rightarrow\frac{2015}{2016}>\frac{2035}{2036}\)

b) Ta có : 

\(1+\frac{-2025}{2024}=\frac{-1}{2024}\)

\(1+-\frac{2026}{2027}=\frac{-1}{2027}\)

Vì \(\frac{-1}{2024}< \frac{-1}{2027}\Rightarrow\frac{-2025}{2024}< \frac{-2026}{2027}\)

25 tháng 12 2023

a: \(\left|a-2b+3\right|^{2023}>=0\forall a,b\)

\(\left(b-1\right)^{2024}>=0\forall b\)

Do đó: \(\left|a-2b+3\right|^{2023}+\left(b-1\right)^{2024}>=0\forall a,b\)

Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}a-2b+3=0\\b-1=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}b=1\\a=2b-3=2\cdot1-3=-1\end{matrix}\right.\)

Thay a=-1 và b=1 vào P, ta được:

\(P=\left(-1\right)^{2023}\cdot1^{2024}+2024=2024-1=2023\)

29 tháng 4 2023

Với x = 2023 

<=> x + 1 = 2024

Khi đó P(2023) = x2023 - (x + 1).x2022 + ... + (x + 1).x - 1

= x2023 - x2023 - x2022 + .. + x2 + x - 1

= x - 1 = 2023 - 1 = 2022

22 tháng 11 2023

c, |2\(x\) + 1| + |3\(x\) - 1| = 0

   vì |2\(x\) + 1| ≥ 0; |3\(x\) - 1| = 0

  ⇒ |2\(x\) + 1| + |3\(x\) - 1| = 0

   ⇔ \(\left\{{}\begin{matrix}2x+1=0\\3x-1=0\end{matrix}\right.\)

   ⇔ \(\left\{{}\begin{matrix}2x=-1\\3x=1\end{matrix}\right.\)

   \(\Rightarrow\) \(\left\{{}\begin{matrix}x=-\dfrac{1}{2}\\x=\dfrac{1}{3}\end{matrix}\right.\)

       \(-\dfrac{1}{2}\) < \(\dfrac{1}{3}\) 

Vậy \(x\) \(\in\) \(\varnothing\)

22 tháng 11 2023

a, Nếu 4.|3\(x\) - 1| = |6\(x\) - 2| + |-1,5|

             4.|3\(x\) -1| - 2.|3\(x\) - 1|  = 1,5

           Nếu 3\(x\) - 1 ≥ 0 ⇒ \(x\) ≥ \(\dfrac{1}{3}\)

Ta có: 4.(3\(x\) - 1) - 2.(3\(x\) - 1) = 1,5

           12\(x\) - 4 - 6\(x\) + 2 = 1,5

            6\(x\) - 2  = 1,5

            6\(x\)        = 1,5 + 2

            6\(x\)       = 3,5

               \(x\)      = 3,5: 6

                \(x\)    = \(\dfrac{7}{12}\)

Nếu 3\(x\) - 1 < 0 ⇒ \(x\) < \(\dfrac{1}{3}\)

Ta có: - 4.(3\(x\) - 1) = - (6\(x\) - 2) + 1,5

           -12\(x\) + 4 + 6\(x\) - 2 = 1,5

             -6\(x\) + 2 = 1,5

              6\(x\)         = 2- 1,5

              6\(x\)          = 0,5

                 \(x\)         = 0,5 : 6

                 \(x\)        = \(\dfrac{1}{12}\)

Vậy \(x\) \(\in\) {\(\dfrac{1}{12}\)\(\dfrac{7}{12}\)}

 

                

      

29 tháng 12 2023

\(\left(\dfrac{1}{3}\right)^2-\left(\dfrac{1}{9}-\dfrac{2023}{2024}\right)\)

\(=\dfrac{1}{9}-\dfrac{1}{9}+\dfrac{2023}{2024}\)

\(=\dfrac{2023}{2024}\)