K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 11 2018

a, an+3-an+1=an.a(a2-1)=an(a-1)a(a+1)

Vì (a-1)a(a+1) là tích 3 số tự nhiên liên tiếp

=> (a-1)a(a+1) chia hết cho 2 và 3

Mà (2,3)=1

=>(a-1)a(a+1) chia hết cho 6

=> an(a-1)a(a+1) chia hết cho 6 

=>đpcm

b, a3+5a=(a3-a)+6a=a(a2-1)+6a=(a-1)a(a+1)+6a

CM (a-1)a(a+1) chia hết cho 6

      6a chia hết cho 6

=>(a-1)a(a+1)+6a chia hết cho 6

=>đpcm

c, a3+b3+c3-a-b-c=(a3-a)+(b3-b)+(c3-c)

đến đây dễ rồi, tự làm

23 tháng 8 2015

Cho a là số tự nhiênchia 6 dư 2 và b là số tự nhiên chia 6 dư 3. Chứng minh axb chia hết cho 6

AH
Akai Haruma
Giáo viên
16 tháng 7 2023

Lời giải:
Đặt $a+1=6k, b+2007=6m$ với $k,m\in\mathbb{Z}$

$4^n+a+b=4^n+6k-1+6m-2007=(4^n-2008)+6k+6m$

Hiển nhiên $4^n-2008\vdots 2$ với mọi $n$ là tự nhiên khác 0

$4\equiv 1\pmod 3\Rightarrow 4^n\equiv 1\pmod 3$

$\Rightarrow 4^n-2008\equiv 1-2008\equiv -2007\equiv 0\pmod 3$

Vậy $4^n-2008$ chia hết cho cả 2 và 3 nên chia hết cho 6

$\Rightarrow 4^n+a+b=4^n-2008+6k+6m\vdots 6$ (đpcm)

13 tháng 11 2015

1,40 số

2,100008

3,10;12;15;30;60;

4,n=1;5

5,450;560;460;405;504;506;605;406;604

làm nốt đi

DD
29 tháng 5 2021

a) Nếu \(n\)chẵn thì \(n+10\)chẵn nên \(\left(n+10\right)\left(n+15\right)⋮2\).

Nếu \(n\)lẻ thì \(n+15\)chẵn nên \(\left(n+10\right)\left(n+15\right)⋮2\).

b) \(n\left(n+1\right)\left(n+2\right)\)là tích của ba số tự nhiên liên tiếp nên trong 3 số \(n,n+1,n+2\)chắc chắn có ít nhất 1 số chia hết cho \(2\), 1 số chia hết cho \(3\)do đó ta có đpcm. 

c) \(n\left(2n+7\right)\left(7n+1\right)=6n.n\left(2n+7\right)+n\left(2n+7\right)\left(n+1\right)\)

\(=6n.n\left(2n+7\right)+2n\left(n+1\right)\left(n+2\right)+3n\left(n+1\right)\)

Ta có: \(6n.n\left(2n+7\right)⋮6,2n\left(n+1\right)\left(n+2\right)⋮6,3n\left(n+1\right)⋮6\)

do đó ta có đpcm.

11 tháng 4 2015

Xét (a+b)3 = (a+b)(a+b)(a+b) = a3 + b3 + 3ab.(a+b)

Tương tự ta có: (a+b+c)3 = [(a+b) + c]= (a+b)3 + c3 + 3(a+b).c.(a+b+c)

= a3 + b3 + 3ab.(a+b) + c3 + 3(a+b).c.(a+b+c)

=> a3 + b3  + c3 = (a+b+c)3 - 3ab(a+b) -  3(a+b).c.(a+b+c)  chia hết cho 6,vì:

a+ b+c chia hết cho 6 nên  (a+b+c)3 chia hết cho 6 và 3(a+b).c.(a+b+c)  chia hết cho 6

Tích ab(a+b)  luôn chia hêt 2 ( Vì nếu 1 trong 2 số a; b chẵn hay a;b cùng chẵn thì tích a.b chẵn; nếu a;b cùng lẻ thì a+ b chẵn)

=> 3ab(a+b)  luôn chia hết  cho 6

Vậy  a3 + b3  + c3 luôn chia hết cho 6

 

 

12 tháng 4 2015

Xét hiệu : (a3 + b3 + c3) - (a + b + c) = a3 + b3 + c3 - a - b - c = (a3 - a) + (b3 - b) + (c3 - c) = a(a2 - 1) + b(b2 - 1) + c(c2 - 1) = a(a - 1)(a + 1) + b(b - 1)(b + 1) + c(c - 1)(c + 1)

a(a - 1)(a + 1) là tích 3 số tự nhiên liên tiếp nên a(a - 1)(a + 1) chia hết cho 2 và 3 

Mà (2,3) = 1

=> a(a - 1)(a + 1) chia hết cho 6 

Tương tự b(b - 1)(b + 1) chia hết cho 6

c(c -1)(c + 1) chia hết cho 6

=>(a3 + b3 + c3) - (a + b + c) chia hết cho 6 

Mà a + b + c chia hết cho 6

=>a3 + b3 + c3 chia hết cho 6(đpcm)