K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 3 2021

Bài 1:

a) \(A=\sqrt{8}+\sqrt{18}-\sqrt{32}\)

\(=2\sqrt{2}+3\sqrt{2}-4\sqrt{2}\)

\(=\sqrt{2}\)

b) \(B=\sqrt{9-4\sqrt{5}}-\sqrt{5}\)

\(=\sqrt{4-4\sqrt{5}+5}-\sqrt{5}\)

\(=\sqrt{\left(2-\sqrt{5}\right)^2}-\sqrt{5}\)

\(=\left|2-\sqrt{5}\right|-\sqrt{5}\)

\(=\sqrt{5}-2-\sqrt{5}\)

\(=-2\)

15 tháng 3 2021

Bài 2:

a) \(\left\{{}\begin{matrix}2x-3y=4\\x+3y=2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}3x=6\\x+3y=2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=2\\2+3y=2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=0\end{matrix}\right.\)

Vậy phương trình có nghiệm là: \(\left\{{}\begin{matrix}x=2\\y=0\end{matrix}\right.\)

b) ĐKXĐ: \(x\ne\pm2\)

Với \(x\ne\pm2\), ta có:

\(\dfrac{10}{x^2-4}+\dfrac{1}{2-x}=1\)

\(\Leftrightarrow\dfrac{10}{\left(x-2\right)\left(x+2\right)}-\dfrac{1}{x-2}=1\)

\(\Leftrightarrow\dfrac{10-x-2}{x^2-4}=1\)

\(\Leftrightarrow\dfrac{8-x}{x^2-4}=1\)

\(\Rightarrow x^2-4=8-x\)

\(\Leftrightarrow x^2+x-12=0\)

\(\Leftrightarrow x^2-3x+4x-12=0\)

\(\Leftrightarrow x\left(x-3\right)+4\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x+4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x+4=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-4\end{matrix}\right.\) (TM)

Vậy phương trình có tập nghiệm là: S ={3; -4}

12 tháng 6 2016

\(P=\left(a+1\right)\left(a^2+1\right)\left(a^4+1\right)...\left(a^{32}+1\right)\left(a^{64}+1\right)\)

\(\Leftrightarrow10P=\left(a-1\right)\left(a+1\right)\left(a^2+1\right)...\left(a^{64}+1\right)\)

\(\Leftrightarrow10P=\left(a^2-1\right)\left(a^2+1\right)\left(a^4+1\right)...\left(a^{64}+1\right)\)

\(\Leftrightarrow10P=\left(a^4-1\right)\left(a^4+1\right)...\left(a^{64}+1\right)\)

Tiếp tục rút gọn, ta được : \(10P=a^{128}-1\Leftrightarrow P=\frac{a^{128}-1}{10}=\frac{11^{128}-1}{10}\)

5 tháng 1 2019

Phương trình 9 x 2  +6x+1 =0 có hệ số a=9,b’=3,c=1

Ta có:  ∆ ’ =  b ' 2 – ac =  3 2  -9.1 = 9 - 9 = 0

Phương trình có nghiệm kép:

 

x 1  =  x 2  = -b'/a =-3/9 =-1/3

18 tháng 7 2015

2 công nhân làm cùng cv trong 4 ngày

\(\rightarrow\)1 ngày làm 1/4 công việc 

người thứ 1 làm mất 6 ngày 

\(\rightarrow\)1 ngày làm 1/6 công việc 

gọi a là số công việc người 2 lm trong 1 ngày 

ta có pt \(\frac{1}{4}=\frac{1}{6}+a\)---> \(a=\frac{1}{12}\) 

----> người 2 lm hết cv trong 12 ngày

mình ko hiểu câu hỏi b cko lắm

14 tháng 9 2023

a) \(\sqrt[]{x-9}+2\sqrt[]{y-2}+3\sqrt[]{z-3}=\dfrac{x+y+z}{2}\left(1\right)\)

\(Đkxđ:\left\{{}\begin{matrix}x\ge9\\y\ge2\\z\ge3\end{matrix}\right.\)

Áp dụng Bất đẳng thức Bunhiacopxki :

\(\left(1\sqrt[]{x-9}+2\sqrt[]{y-2}+3\sqrt[]{z-3}\right)^2\le\left(1^2+2^2+3^2\right)\left(x-9+y-2+z-3\right)=14\left(x+y+z-14\right)\)

Dấu "=" xảy ra khi và chỉ khi :

\(\dfrac{x-9}{1}=\dfrac{y-2}{2}=\dfrac{z-3}{3}\left(a\right)\)

\(\left(1\right)\Leftrightarrow\)\(14\left(x+y+z-14\right)=\dfrac{\left(x+y+z\right)^2}{4}\left(2\right)\)

Đặt \(t=x+y+z\)

\(\Leftrightarrow14t-196=\dfrac{t^2}{4}\)

\(\Leftrightarrow t^2+56t-784=0\)

\(\Leftrightarrow\left(t-28\right)^2=0\)

\(\Leftrightarrow t=28\)

\(\Leftrightarrow x+y+z=28\)

\(\left(a\right)\Leftrightarrow\dfrac{x-9}{1}=\dfrac{y-2}{2}=\dfrac{z-3}{3}=\dfrac{x+y+z-14}{6}=\dfrac{28-14}{6}=\dfrac{7}{3}\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-9=1.\dfrac{7}{3}=\dfrac{7}{3}\\y-2=2.\dfrac{7}{3}=\dfrac{14}{3}\\z-3=3.\dfrac{7}{3}=7\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{34}{3}\\y=\dfrac{20}{3}\\z=10\end{matrix}\right.\)

12 tháng 9 2023

Bài 6 :

Xét tam giác vuông AHC tại H có :

\(AC^2=AH^2+CH^2=144+25=169\)

\(\Rightarrow AC=13\left(cm\right)\)

\(sinC=\dfrac{AH}{AC}=\dfrac{12}{13}\)

\(sin^2C+cos^2C=1\Rightarrow cos^2C=1-sin^2C\)

\(\Rightarrow cos^2C=1-\dfrac{144}{169}=\dfrac{25}{169}\)

\(\Rightarrow cosC=\dfrac{5}{13}\left(cos>0\right)\)

\(sinB=sin\left(90^o-C\right)=cosC=\dfrac{5}{13}\)

12 tháng 9 2023

Bài 7 :

Ta có :

\(\widehat{B}+\widehat{C}=90^o\) (tam ABC vuông tại A)

\(\Leftrightarrow\widehat{C}=90^o-\widehat{B}=90^o-45^o=45^o\)

\(\Rightarrow\left\{{}\begin{matrix}sin\widehat{C}=sin45^o=\dfrac{\sqrt[]{2}}{2}\\cos\widehat{C}=cos45^o=\dfrac{\sqrt[]{2}}{2}\\tan\widehat{C}=tan45^o=1\\cot\widehat{C}=cot45^o=1\end{matrix}\right.\)

Câu 1: Rút gọn biểu thức sau: A = \(\left(\sqrt{3}+1\right)\sqrt{\dfrac{14-6\sqrt{3}}{5+\sqrt{3}}}\)Câu 2: 2.1 Giải các phương trình sau a/ x2 = (x-1)(3x-2)b/ 9x4+5x2-4= 02.2 Giải bài toán sau bằng cách lập phương trình: một đội xe cần chở 120 tấn hàng, hôm làm việc có 2 xe bị điều đi nơi khác nên mỗi xe phải,chở thêm 3 tấn nữa. Tính số xe lúc đầu của độiBài 3: Cho parabol (P): y= ax2 và đường thẳng (d): y= mx+ 1a) Tìm a biết (P)...
Đọc tiếp

Câu 1: Rút gọn biểu thức sau: A = \(\left(\sqrt{3}+1\right)\sqrt{\dfrac{14-6\sqrt{3}}{5+\sqrt{3}}}\)

Câu 2: 

2.1 Giải các phương trình sau 

a/ x= (x-1)(3x-2)

b/ 9x4+5x2-4= 0

2.2 Giải bài toán sau bằng cách lập phương trình: một đội xe cần chở 120 tấn hàng, hôm làm việc có 2 xe bị điều đi nơi khác nên mỗi xe phải,chở thêm 3 tấn nữa. Tính số xe lúc đầu của đội

Bài 3: Cho parabol (P): y= ax2 và đường thẳng (d): y= mx+ 1

a) Tìm a biết (P) đi qua điểm A (2;-4). Vẽ (P) với a tìm được 

b) Tìm giá trị của m để đường thẳng (d) tiếp xúc với parabol (P). Tìm tọa độ tiếp điểm 

Bài 4: Cho phương trình: x2 -(2m -1)x + m2 -1 = 0, m là tham số 

a) Tìm các giá trị của m để phương trình có 2 nghiệm phân biệt 

b) Gọi X1x2 lần lượt là hai nghiệm của phương trình. Tìm m để phương trình có hai nghiệm thỏa mản: (x-x2)2 = x-3x2

Bài 5: Cho đường tròn (O;R) và một điểm nằm ngoài đường tròn. Từ A kẻ 2 tiếp tuyến AB,AC và một cát tuyến AMN đến O

a. Chứng minh: AB2 = AM.AN 

b/ Gọi i là trung điểm MN,Ci cắt đường tròn tại K. Chứng minh A, B, i, O 

cùng thuộc một đường tròn và BK//MN

c) gọi H là giao điểm của AO và BC. Chứng minh tứ giác HMNO nội tiếp và HB là phân giác của góc MHN

 

4
29 tháng 5 2021

1.\(A=\left(\sqrt{3}+1\right)\sqrt{\dfrac{14-6\sqrt{3}}{5+\sqrt{3}}}=\left(\sqrt{3}+1\right)\sqrt{\dfrac{\left(14-6\sqrt{3}\right)\left(5-\sqrt{3}\right)}{\left(5+\sqrt{3}\right)\left(5-\sqrt{3}\right)}}\)

\(=\left(\sqrt{3}+1\right)\sqrt{\dfrac{44\left(2-\sqrt{3}\right)}{22}}=\left(\sqrt{3}+1\right)\sqrt{4-2\sqrt{3}}=\left(\sqrt{3}+1\right)\sqrt{\left(\sqrt{3}-1\right)^2}\)

\(=\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)=2\)

29 tháng 5 2021

2.1.a) \(x^2=\left(x-1\right)\left(3x-2\right)\Leftrightarrow x^2=3x^2-5x+2\Leftrightarrow2x^2-5x+2=0\)

\(\Leftrightarrow\left(x-2\right)\left(2x-1\right)=0\Rightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{1}{2}\end{matrix}\right.\)

b) \(9x^4+5x^2-4=0\Leftrightarrow9x^4+9x^2-4x^2-4=0\)

\(\Leftrightarrow9x^2\left(x^2+1\right)-4\left(x^2+1\right)=0\Leftrightarrow\left(x^2+1\right)\left(9x^2-4\right)=0\)

mà \(x^2+1>0\Rightarrow9x^2=4\Rightarrow x^2=\dfrac{4}{9}\Rightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=-\dfrac{2}{3}\end{matrix}\right.\)

2) Gọi số xe lúc đầu của đội là a(xe) \(\left(a\in N,a>0\right)\)

Theo đề,ta có: \(\left(a-2\right)\left(\dfrac{120}{a}+3\right)=120\Leftrightarrow120+3a-\dfrac{240}{a}-6=120\)

\(\Leftrightarrow\dfrac{3a^2-6a-240}{a}=0\Rightarrow3a^2-6a-240=0\Rightarrow a^2-2a-80=0\)

\(\Leftrightarrow\left(a+8\right)\left(a-10\right)=0\) mà \(a>0\Rightarrow a=10\)

 

b; \(\text{Δ}=1^2-4\cdot\left(-2\right)\cdot\left(-3\right)=1-4\cdot6=-23< 0\)

Do đó: Phương trình vô nghiệm

c: \(\text{Δ}=1^2-4\cdot\left(-1\right)\cdot11=1+44=45>0\)

Do đó: Phương trình có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}x_1=\dfrac{1-3\sqrt{5}}{-2}=\dfrac{3\sqrt{5}-1}{2}\\x_2=\dfrac{-3\sqrt{5}-1}{2}\end{matrix}\right.\)

25 tháng 2 2022

a, \(\Delta'=2-\left(-6\right)=8>0\)

vậy pt luôn có 2 nghiệm pb 

\(x_1=-\sqrt{2}-2\sqrt{2};x_2=-\sqrt{2}+2\sqrt{2}\)

b, \(\Delta=1-4\left(-3\right)\left(-2\right)=1-16< 0\)

pt vô nghiệm 

c, \(\Delta=1-4.11\left(-1\right)=1+44=45>0\)

pt luôn có 2 nghiệm pb 

\(x_1=\dfrac{-1-3\sqrt{5}}{-2};x_2=\dfrac{-1+3\sqrt{5}}{-2}\)