Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: góc CIM=góc CNM=1/2*180=90 độ
=>NM vuông góc BC
góc MAB+góc MNB=180 độ
=>MABN nội tiếp
góc CAB=góc CIB=90 độ
=>CIAB nội tiếp
b: góc ANM=góc MBA
góc INM=góc ICA
mà góc MBA=góc ICA
nên góc ANM=góc INM
=>NM là phân giác của góc ANI
c: Xét ΔBNM vuông tại N và ΔBIC vuông tại I có
góc NBM chung
=>ΔBNM đồng dạng với ΔBIC
=>BN/BI=BM/BC
=>BN*BC=BI*BM
Xét ΔCNM vuông tại N và ΔCAB vuông tại A có
góc NCM chung
=>ΔCNM đồng dạng với ΔCAB
=>CN/CA=CM/CB
=>CN*CB=CA*CM
=>BM*BI+CM*CA=BC^2=AB^2+AC^2
a: Gọi I là trung điểm của CM
Xét (I) có
ΔCDM nội tiếp
CM là đường kính
Do đó: ΔCDM vuông tại D
=>góc CDM=góc CDB=90 độ
Xét tứ giác ABCD có
góc CAB=góc CDB=90 độ
=>ABCD nội tiếp
b: Xét ΔCAB có CO/CB=CM/CA=1/2
nên OM//AB
=>OM vuông góc AC tại M
=>OM là tiếp tuyến của (I)
a) Để chứng minh A, B, C, D cùng thuộc một đường tròn, ta cần chứng minh tứ giác ABCD là tứ giác nội tiếp. Ta có:
- Góc BAD = góc BAC (cùng chắn cung BC)
- Góc BCD = góc BCA (cùng chắn cung BA)
Do đó, góc BAD + góc BCD = góc BAC + góc BCA = 90 độ (vì tam giác ABC vuông tại A)
Suy ra, tứ giác ABCD là tứ giác nội tiếp.
b) Để chứng minh OM là tiếp tuyến của đường tròn đường kính MC, ta cần chứng minh OM vuông góc với MC. Ta có:
- Góc OMB = góc ONB (cùng chắn cung OB)
- Góc ONB = góc MNB (do tam giác MNB vuông tại N)
- Góc MNB = góc MCB (do tam giác MCB vuông tại C)
- Góc MCB = góc ACB (do tam giác ABC vuông tại A)
Do đó, góc OMB = góc ACB
Suy ra, OM vuông góc với MC.
Vậy OM là tiếp tuyến của đường tròn đường kính MC.
a) ⇒ A ∈ đường tròn đường kính BC.
D ∈ đường tròn đường kính MC
⇒ D ∈ đường tròn đường kính BC
⇒ A, B, C, D cùng thuộc đường tròn đường kính BC
hay tứ giác ABCD nội tiếp.
b) Xét đường tròn đường kính BC:
đều là góc nội tiếp chắn cung
c) + Trong đường tròn đường kính MC:
đều là các góc nội tiếp cùng chắn cung
+ Trong đường tròn đường kính BC:
đều là các góc nội tiếp chắn cung
a: Gọi O là trung điểm của MC
=>O là tâm đường tròn đường kính MC
Xét (O) có
ΔCNM nội tiếp
CM là đường kính
Do đó: ΔCNM vuông tại N
=>MN\(\perp\)NC tại N
=>MN\(\perp\)CB tại N
Xét tứ giác ABNM có \(\widehat{MNB}+\widehat{MAB}=90^0+90^0=180^0\)
nên ABNM là tứ giác nội tiếp
=>A,B,N,M cùng thuộc một đường tròn
b: ABNM là tứ giác nội tiếp
=>\(\widehat{ANM}=\widehat{ABM}\)
=>\(\widehat{ANM}=\widehat{ABI}\)(1)
Xét tứ giác CIAB có \(\widehat{CIB}=\widehat{CAB}=90^0\)
nên CIAB là tứ giác nội tiếp
=>\(\widehat{ABI}=\widehat{ACI}\)
mà \(\widehat{ACI}=\widehat{MCI}=\widehat{MNI}\left(=\dfrac{1}{2}sđ\stackrel\frown{MI}\right)\)
nên \(\widehat{ABI}=\widehat{MNI}\left(2\right)\)
Từ (1) và (2) suy ra \(\widehat{MNI}=\widehat{MNA}\)
=>NM là phân giác của góc ANI