K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 3 2018

a) Tứ giác ACBM có: 

Góc BAC=90 (vì ABC vuông tại A) 

BMC=90 (góc nội tiếp chắn nửa đường tròn )

=> BAC+BMC=180 => ACBM nội tiếp đ.tr


b) Tứ giác BNME nội tiếp trong đường tròn đường kính BE nên: 
góc ABN=AME (cùng bù với góc NME)
Mà góc AME=ABC (góc nội tiếp cùng chắn cung AC) 
Nên ABN=ABC =>  BA là tia phân giác của góc CBN.
c) 
(  tam giác KBC có hai đường cao BA và CM cắt nhau tại E
=>  E là trực tâm tam giác KBC => KE vuông góc với BC (1)
( góc EDB=90 góc nội tiếp chắn nửa đường tròn) =>  ED vuông góc với BC (2)
(1) và (2) ta có  ba điểm K, E, D thẳng hàng và KD vuông với BC

Giúp mình với . ( giải chi tiết và cái hình luôn) Bài 1,Cho tam giác ABC nhọn. Đường tròn đường kính BC cắt AB ở N và cắt AC ở M. Gọi H làgiao điểm của BM và CN.a) Tính số đo các góc BMC và BNC.b) Chứng minh AH vuông góc BC.c) Chứng minh tiếp tuyến tại N đi qua trung điểm AH Bài 2, Cho đường tròn tâm (O; R) đường kính AB và điểm M trên đường tròn sao cho gócMAB = 60độ . Kẻ dây MN vuông góc với AB...
Đọc tiếp

Giúp mình với . ( giải chi tiết và cái hình luôn)
Bài 1,Cho tam giác ABC nhọn. Đường tròn đường kính BC cắt AB ở N và cắt AC ở M. Gọi H là
giao điểm của BM và CN.
a) Tính số đo các góc BMC và BNC.
b) Chứng minh AH vuông góc BC.
c) Chứng minh tiếp tuyến tại N đi qua trung điểm AH
Bài 2, Cho đường tròn tâm (O; R) đường kính AB và điểm M trên đường tròn sao cho góc
MAB = 60độ . Kẻ dây MN vuông góc với AB tại H.
a) Chứng minh AM và AN là các tiếp tuyến của đường tròn (B; BM).
b) Chứng minh MN2 = 4AH.HB .
c) Chứng minh tam giác BMN là tam giác đều và điểm O là trọng tâm của nó.
d) Tia MO cắt đường tròn (O) tại E, tia MB cắt (B) tại F. Chứng minh ba điểm N, E, F thẳng hàng.
Bài 3, Cho đường tròn (O; R) và điểm A cách O một khoảng bằng 2R, kẻ tiếp tuyến AB tới đường
tròn (B là tiếp điểm).
a) Tính số đo các góc của tam giác OAB
b) Gọi C là điểm đối xứng với B qua OA. Chứng minh điểm C nằm trên đường tròn O và AC
là tiếp tuyến của đường tròn (O).
c) AO cắt đường tròn (O) tại G. Chứng minh G là trọng tâm tam giác ABC.
Bài 4, Từ điểm A ở ngoài đường tròn (O; R) kẻ hai tiếp tuyến AB, AC (với B và C là hai tiếp điểm). Gọi H là giao điểm của OA và BC.
a) Chứng minh OA vuông góc BC và tính tích OH.OA theo R
b) Kẻ đường kính BD của đường tròn (O). Chứng minh CD // OA.
c) Gọi E là hình chiếu của C trên BD, K là giao điểm của AD và CE. Chứng minh K là trung điểm CE.

3
9 tháng 10 2017

Hình học lớp 9

21 tháng 4 2017

Tự giải đi em

17 tháng 4 2017

Giải bài 97 trang 105 SGK Toán 9 Tập 2 | Giải toán lớp 9

Giải bài 97 trang 105 SGK Toán 9 Tập 2 | Giải toán lớp 9

20 tháng 4 2017

a, ta có ^BAC=900(góc nội tiếp chắn nửa đường tròn đường kính BC)

^MDC=900(góc nội tiếp chắn nửa đường tròn đường kính MC)

=>^BAC=^MDC(=900)

=>tứ giác ABCD nội tiếp (hai đỉnh A và D kề nhau cùng nhìn cạnh BC dưới hai góc bằng nhau)

b. vì tứ giác ABCD nội tiếp (câu a) nên ^ABD=^ACD (hai góc nội tiếp cùng chắn cung AD)

c, ta có bốn điểm D,S,C,M cùng thuộc đường tròn đường kính MC

=>tứ giác DSCM nội tiếp

=>^ADM=^SCM (cùng bù với ^MDS)

Mà ADCB nội tiếp nên ^ADM=^MCB( hai góc nội tiếp cùng chắn cung AB)

Do đó ^SCM=^MCB

=>CA là tia phân giác ^SCB