Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
b)
chứng minh EDCB là tgnt => góc AED = góc ACB
từ đó, chứng minh tam giác AED đồng dạng ACB (gg)
=> DE / BC = AD / AB
tam giác ADB vuông tại A => AD / AB = cotg A = cotg 45 = 1
c)
kẻ tiếp tuyến tại Ax của (O) (Ax thuộc nửa mp bờ AC chứa B)
góc xAB = ACB = AED
=> DE // Ax
Mà Ax vuông góc với OA nên OA vuông góc với DE. (đpcm)
khi ABC đều thì tâm đường tròn ngoại tiếp trùng với trọng tâm tam giác
Gọi các điểm như hình vẽ
mà ta có : \(CH=\sqrt{CA^2-AH^2}=\sqrt{a^2-\left(\frac{a}{2}\right)^2}=\frac{a\sqrt{3}}{2}\)
mà ta có \(CJ=\frac{2}{3}CH=\frac{a\sqrt{3}}{3}\) chính là bán kính đường tròn ngoại tiếp ABC
a) Xét (O) có :
AB là tiếp tuyến tại B
AC là tiếp tuyến tại C
AB cắt AC tại A
\(\Rightarrow\widehat{ABO}=\widehat{ACO}=90^o\)và OA là p/g \(\widehat{BOC}\)
Xét tg ABOC có \(\widehat{ABO}+\widehat{ACO}=180^o\)Mà 2 góc này đối nhau
\(\Rightarrow\)ABOC là tg nt
b) Xét (O) có
\(\widehat{ABE}\)là góc tạo bởi tiếp tuyến AB và dây BE
\(\widehat{BDE}\)là góc nt chắn cung BE
\(\Rightarrow\widehat{ABE}=\widehat{BDE}=\frac{1}{2}sđ\widebat{BE}\)
Xét \(\Delta ABEvà\Delta ADB:\)
\(\widehat{BAD}\)chung
\(\widehat{ABE}=\widehat{BDE}\)
\(\Rightarrow\Delta ABE\infty\Delta ADB\left(gg\right)\)
\(\Rightarrow\frac{AB}{AD}=\frac{AE}{AB}\Rightarrow AB^2=AD.AE\)
c) Vì OA là p/g \(\widehat{BOC}\Rightarrow\widehat{BOA}=\widehat{COA}=\frac{\widehat{BOC}}{2}\)
Do ABOC là tg nt\(\Rightarrow\widehat{BOA}=\widehat{BCA}\)(cùng chắn cung AB)
Suy ra \(\widehat{AOC}=\widehat{ACB}\)
Áp dụng bất đẳng thức cô si ta có :
b+c\(\ge2\)\(\sqrt{bc}\)\(\Rightarrow\)R(b+c)\(\ge2\)R.\(\sqrt{bc}\)\(\ge a\sqrt{bc}\)(quan hệ đường kính và dây cung 2R\(\ge\)BC=a)
Dấu "=" xảy ra khi:\(\left\{{}\begin{matrix}b=c\\BC=2R\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}CA=AB\\BC=2R\end{matrix}\right.\)
\(\Leftrightarrow\Delta ABC\) vuông cân tại A