\(x^2-10x+27\)

...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 7 2019

bạn nhớ theo dĩ và tick cho mk nhé

5 tháng 7 2019

Bài 5 : a, -11-2x-x2=-(x2+2x)-11

=-(x2+2x+1)-11+1

=-(x+1)2-10\(\le-10\)

Dấu = xảy ra khi : -(x+1)2=0

\(\Leftrightarrow\)x=-1

b,-x2-5x=-(x2+5x)=-(x2+2.\(\frac{5}{2}\)x+\(\frac{25}{4}\))+\(\frac{25}{4}\)

=-(x+\(\frac{5}{2}\))2+\(\frac{25}{4}\le\frac{25}{4}\)

Dấu = xảy ra khi : -(x+\(\frac{5}{2}\))2=0

\(\Leftrightarrow\)x=\(-\frac{5}{2}\)

c, 3x-x2-7

=-(x2-3x)-7

=-(x2-2.\(\frac{3}{2}\)x+\(\frac{9}{4}\))-7+\(\frac{9}{4}\)

=-(x-\(\frac{3}{2}\))2-\(\frac{19}{4}\le-\frac{19}{4}\)

Dấu = xảy ra khi : -(x-\(\frac{3}{2}\))2=0

\(\Leftrightarrow x=\frac{3}{2}\)

22 tháng 10 2021

\(1,a,A=x^2-6x+25\)

\(=x^2-2.x.3+9-9+25\)

\(=\left(x-3\right)^2+16\)

Ta có :

\(\left(x-3\right)^2\ge0\)Với mọi x

\(\Rightarrow\left(x-3\right)^2+16\ge16\)

Hay \(A\ge16\)

\(\Rightarrow A_{min}=16\)

\(\Leftrightarrow x=3\)

22 tháng 10 2021

\(b,B=4x^2+4x-2\)

\(B=4x^2+4x+1-3\)

\(B=\left(4x^2+4x+1\right)-3\)

\(B=\left(2x+1\right)^2-3\)

Ta có : 

\(\left(2x+1\right)^2\ge0\)với mọi x

\(\Rightarrow\left(2x+1\right)^2-3\ge-3\)

\(\Leftrightarrow B\ge-3\)

\(\Rightarrow B_{min}=-3\)

\(\Leftrightarrow x=-\frac{1}{2}\)

a) \(A=x^2-6x+11\)

\(\Rightarrow A=x^2-6x+9+2\)

\(\Rightarrow A=\left(x-3\right)^2+2\)

Ta có: \(\left(x-3\right)^2\ge0\forall x\)

\(\Rightarrow\left(x-3\right)^2+2\ge2\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow\) x = 3

Vậy \(MIN\) \(A=2\Leftrightarrow x=3\)

b) \(B=2x^2+10x-1\)

\(\Rightarrow B=2\left(x^2+5\right)-1\)

\(\Rightarrow B=2\left(x^2+2\cdot\dfrac{5}{2}\cdot x+\dfrac{25}{4}\right)-\dfrac{25}{2}-1\)

\(\Rightarrow B=2\left(x^2+2\cdot\dfrac{5}{2}\cdot x+\dfrac{25}{4}\right)-\dfrac{23}{2}\)

Ta có: \(2\left(x^2+2\cdot\dfrac{5}{2}\cdot x+\dfrac{25}{4}\right)\ge0\forall x\)

\(\Rightarrow2\left(x^2+2\cdot\dfrac{5}{2}\cdot x+\dfrac{25}{4}\right)-\dfrac{23}{2}\ge-\dfrac{23}{2}\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow\) x = \(\dfrac{-5}{2}\)

Vậy \(MIN\) \(B=\dfrac{-23}{2}\Leftrightarrow x=\dfrac{-5}{2}\)

c) \(C=5x-x^2\)

\(\Rightarrow C=-\left(x^2-5x\right)\)

\(\Rightarrow C=-\left(x^2-2\cdot\dfrac{5}{2}\cdot x+\dfrac{25}{4}\right)+\dfrac{25}{4}\)

\(\Rightarrow C=-\left(x-\dfrac{5}{2}\right)^2+\dfrac{25}{4}\)

Ta có: \(-\left(x-\dfrac{5}{2}\right)^2\le0\forall x\)

\(\Rightarrow-\left(x-\dfrac{5}{2}\right)^2+\dfrac{25}{4}\le\dfrac{25}{4}\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow\) x = \(\dfrac{5}{2}\)

Vậy \(MAX\) \(C=\dfrac{25}{4}\Leftrightarrow x=\dfrac{5}{2}\)

30 tháng 11 2016

các bạn làm giùm mih đi câu nào cũng được

2 tháng 9 2018

\(A=x^2-3x+5\)

\(=x^2-3x+\frac{9}{4}+\frac{11}{4}\)

\(=\left(x-\frac{3}{2}\right)^2+\frac{11}{4}\)

\(\left(x-\frac{3}{2}\right)^2\ge0\Rightarrow A\ge\frac{11}{4}\)

Dấu "=" xảy ra khi \(x-\frac{3}{2}=0\Rightarrow x=\frac{3}{2}\)

Vậy Min A = \(\frac{11}{4}\Leftrightarrow x=\frac{3}{2}\)

2 tháng 9 2018

a) \(A=x^2-3x+5\)

\("="\Leftrightarrow x=\frac{11}{4}\Rightarrow x=\frac{3}{2};\frac{11}{4}\)

b) \(B=\left(2x-1\right)^2+\left(x+2\right)^2\)

\("="\Leftrightarrow x=5\Rightarrow x=0;5\)

c) \(C=4x-x^2+3\)

\("="\Leftrightarrow x=7\Rightarrow x=2;7\)

d) \(D=x^4+x^2+2\)

\("="\Leftrightarrow x=2\Rightarrow x=0;2\)

a)A=\(x^2-2x+7\)

=\(\left(x^2-2x+1\right)+6=\left(x-1\right)^2+6\)

Với mọi x thì \(\left(x-1\right)^2\)>=0

=>\(\left(x-1\right)^2+6\)>=6

Hay A>=6 với mọi x

Để A=6 thì

\(\left(x-1\right)^2=0\)

=>\(x-1=0\)

=>\(x=1\)

Vậy...

Các câu sau tương tự

9 tháng 9 2017

làm hết lun jk ak

28 tháng 8 2018

mk gợi ý, phần còn lại tự làm 

a)  \(A=x^2+2x+5=\left(x+1\right)^2+4\ge4\)

b) \(B=4x^2+4x+11=\left(2x+1\right)^2+10\ge10\)

c)  \(\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)=\left(x^2+5x-6\right)\left(x^2+5x+6\right)\)

\(=\left(x^2+5x\right)^2-36\ge-36\)

d)  \(D=x^2-2x+y^2-4y+7=\left(x-1\right)^2+\left(y-2\right)^2+2\ge2\)

e)  \(E=x^2-4xy+5y^2+10x-22y+28=\left(x-2y+5\right)^2+\left(y-1\right)^2+2\ge2\)

28 tháng 8 2018

a) A = x2 + 2x + 5 

    = x2 + 2x + 1 + 4

    = ( x + 1 )2  + 4

Nhận xét :

( x + 1 )2 > 0 với mọi x 

=> ( x + 1 )2 + 4 > 4 

=> A > 4 

=> A min = 4

Dấu " = " xảy ra khi : ( x + 1 )2  =  0

                                  => x + 1 = 0

                                  => x = - 1

Vậy A min = 4 khi x = - 1

b) B = 4x2 + 4x + 11

= ( 2x )2 + 4x + 1 + 10

= ( 2x + 1 )2 + 10

Nhận xét :

( 2x + 1 )2 > 0 với mọi x

=> ( 2x + 1 )2 + 10 > 10

=> B  >  10

=> B min = 10

Dấu " = " xảy ra khi : ( 2x + 1 )2 = 0

                               => 2x + 1 = 0

                                => x = \(\frac{-1}{2}\)

Vậy Bmin = 10 khi x = \(\frac{-1}{2}\)

c) C = ( x - 1 ) ( x + 2 ) ( x + 3 ) ( x + 6 )

       = [ ( x - 1 ) ( x + 6 ) ] [ ( x + 2 ) ( x + 3 ) ]

        = ( x2 + 5x - 6 ) (  x2 + 5x + 6 )

       = ( x2 + 5x ) 2 - 62

        = ( x2  + 5x )2 - 36

Nhận xét : 

( x2 + 5x )2 > 0 với mọi x

=> ( x2 + 5x )2 - 36 > - 36

=> C > - 36

=> C min = - 36

Dấu " = " xảy ra khi : ( x2 + 5x )2 = 0

                               => x2 + 5x = 0

                               => x ( x + 5 ) = 0

                               => \(\orbr{\begin{cases}x=0\\x+5=0\end{cases}}\)

                              => \(\orbr{\begin{cases}x=0\\x=-5\end{cases}}\)

Vậy C min = - 36 khi x = 0 hoặc x = - 5

d) D = x2 - 2x + y2 - 4y + 7

        = ( x2 - 2x + 1 ) + ( y2 - 4x + 4 ) + 2

        = ( x - 1 )2 + ( y - 2 )2 + 2

Nhận xét :

( x - 1 )2 > 0 với mọi x

( y - 2 )2 > 0 với mọi y

=> ( x - 1 )2 + ( y - 2 )2 > 0 

=> ( x - 1 )2 + ( y - 2 )2 + 2  >  2

=> D > 2

=> D min = 2

Dấu " = " xảy ra khi :  \(\hept{\begin{cases}\left(x-1\right)^2=0\\\left(y-2\right)^2=0\end{cases}}\) 

                               => \(\hept{\begin{cases}x-1=0\\y-2=0\end{cases}}\)

                               => \(\hept{\begin{cases}x=1\\y=2\end{cases}}\)

Vậy D min = 2 khi x = 1 và y = 2

5 tháng 7 2017

Bài 1:

a,\(P=x^2-2x+5=x^2-x-x+1+4=\left(x-1\right)^2+4\)

Với mọi giá trị của \(x\in R\) ta có:

\(\left(x-1\right)^2\ge0\Rightarrow\left(x-1\right)^2+4\ge4\)

hay \(P\ge4\) với mọi giá trị của \(x\in R\).

Để \(P=4\) thì \(\left(x-1\right)^2+4=4\)

\(\Rightarrow x-1=0\Rightarrow x=1\)

Vậy..............

b, Tương tự a.

c, \(M=x^2+y^2-x+6y+10\)

\(M=x^2-\dfrac{1}{2}x-\dfrac{1}{2}x+\dfrac{1}{4}+y^2+3y+3y+9+\dfrac{3}{4}\)

\(M=\left(x^2-\dfrac{1}{2}x-\dfrac{1}{2}x+\dfrac{1}{4}\right)+\left(y^2+3y+3y+9\right)+\dfrac{3}{4}\)

\(M=\left(x-\dfrac{1}{2}\right)^2+\left(y+3\right)^2+\dfrac{3}{4}\)

Với mọi giá trị của \(x\in R\) ta có:

\(\left(x-\dfrac{1}{2}\right)^2+\left(y+3\right)^2\ge0\Rightarrow\left(x-\dfrac{1}{2}\right)^2+\left(y+3\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)

hay \(M\ge\dfrac{3}{4}\) với mọi giá trị của \(x\in R\).

Để \(M=\dfrac{3}{4}\)thì

\(\left\{{}\begin{matrix}x-\dfrac{1}{2}=0\\y+3=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=-3\end{matrix}\right.\)

Vậy......................

Bài 2:

a, \(A=4x-x^2+3=-\left(x^2-4x-3\right)=-\left(x^2-2x-2x+4-7\right)\)

\(=-\left[\left(x-2\right)^2-7\right]\)

Với mọi giá trị của \(x\in R\) ta có:

\(\left(x-2\right)^2\ge0\Rightarrow\left(x-2\right)^2-7\ge-7\)

\(\Rightarrow-\left[\left(x-2\right)^2-7\right]\le7\)

hay \(A\le7\) với mọi giá trị của \(x\in R\).

Để \(A=7\)thì \(\left(x-2\right)^2=0\)

\(\Rightarrow x=2\)

Vậy..................

b,c làm tương tự!

Chúc bạn học tốt!!!