K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Ta có: \(x^2+x+1\)

\(=x^2+2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\)

\(=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x\)

Dấu '=' xảy ra khi \(x=-\dfrac{1}{2}\)

b: Ta có: \(-x^2+x+2\)

\(=-\left(x^2-2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{9}{4}\right)\)

\(=-\left(x-\dfrac{1}{2}\right)^2+\dfrac{9}{4}\le\dfrac{9}{4}\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{1}{2}\)

4 tháng 9 2021

\(A=x^2+4x+5=\left(x+2\right)^2+1\ge1\)

Dấu \("="\Leftrightarrow x=-2\)

\(B=x^2+10x-1=\left(x+5\right)^2-26\ge-26\)

Dấu \("="\Leftrightarrow x=-5\)

\(C=5-4x+4x^2=\left(2x-1\right)^2+4\ge4\)

Dấu \("="\Leftrightarrow x=\dfrac{1}{2}\)

\(D=x^2+y^2-2x+6y-3=\left(x-1\right)^2+\left(y+3\right)^2-13\ge-13\)

Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-3\end{matrix}\right.\)

\(E=2x^2+y^2+2xy+2x+3=\left(x+y\right)^2+\left(x+1\right)^2+2\ge2\)

Dấu \("="\Leftrightarrow x=-y=-1\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=1\end{matrix}\right.\)

\(A=x^2+4x+5\)

\(=x^2+4x+4+1\)

\(=\left(x+2\right)^2+1\ge1\forall x\)

Dấu '=' xảy ra khi x=-2

\(C=4x^2-4x+5\)

\(=4x^2-4x+1+4\)

\(=\left(2x-1\right)^2+4\ge4\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{1}{2}\)

6 tháng 11 2021

\(A=\left(x^2-4x+4\right)+4=\left(x-2\right)^2+4\ge4\)

\(minA=4\Leftrightarrow x=2\)

\(B=\left(4x^2-12x+9\right)+2=\left(2x-3\right)^2+2\ge2\)

\(minB=2\Leftrightarrow x=\dfrac{3}{2}\)

\(C=3\left(x^2+2x+1\right)-8=3\left(x+1\right)^2-8\ge-8\)

\(minC=-8\Leftrightarrow x=-1\)

\(D=-\left(x^2-2x+1\right)-4=-\left(x-1\right)^2-4\le-4\)

\(maxD=-4\Leftrightarrow x=1\)

\(E=-\left(4x^2-6x+\dfrac{9}{4}\right)-\dfrac{11}{4}=-\left(2x-\dfrac{3}{2}\right)^2-\dfrac{11}{4}\le-\dfrac{11}{4}\)

\(maxA=-\dfrac{11}{4}\Leftrightarrow x=\dfrac{3}{4}\)

\(F=-2\left(x^2-\dfrac{1}{2}x+\dfrac{1}{16}\right)-\dfrac{55}{8}=-2\left(x-\dfrac{1}{4}\right)^2-\dfrac{55}{8}\le-\dfrac{55}{8}\)

\(maxF=-\dfrac{55}{8}\Leftrightarrow x=\dfrac{1}{4}\)

\(G=\left(x^2-4xy+4y^2\right)+\left(y^2+y+\dfrac{1}{4}\right)+\dfrac{3}{4}=\left(x-2y\right)^2+\left(y+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)

\(maxG=\dfrac{3}{4}\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=-\dfrac{1}{2}\end{matrix}\right.\)

\(H=-\left(x^2-2x+1\right)-\left(y^2+4y+4\right)+16=-\left(x-1\right)^2-\left(y+2\right)^2+16\le16\)

\(maxH=16\Leftrightarrow\) \(\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)

8 tháng 11 2021

hk có câu H na bạn?
bạn thiếu câu cuối kìa

4 tháng 8 2018

Ik mk nha, hôm nay ngày mai, ngày kia mk ik 3 lần lại cho bạn (thành 9 lần)

Nhớ kb với mìn lun nha!! Mk rất vui đc làm quen vs bạn, cảm ơn mn nhìu lắm

4 tháng 8 2018

a) \(A=x^2-8x+17=\left(x-4\right)^2+1\ge1\)

Vậy MIN A = 1   khi  x = 4

b) \(T=x^2-4x+7=\left(x-2\right)^2+3\ge3\)

Vậy MIN T = 3   khi  x = 2

c)  \(H=3x^2+6x-1=3\left(x+1\right)^2-4\ge-4\) 

Vậy MIN H = -4  khi   x = -1

d)  \(E=x^2+y^2-4\left(x+y\right)+16=\left(x-2\right)^2+\left(y-2\right)^2+8\ge8\)

Vậy MIN E = 8   khi  x = y = 2

e) \(K=4x^2+y^2-4x-2y+3=\left(2x-1\right)^2+\left(y-1\right)^2+1\ge1\)

Vậy MIN  K = 1    khi  x = 1/2;  y = 1

f) \(M=\frac{3}{2}x^2+x+1=\frac{3}{2}\left(x+\frac{1}{3}\right)^2+\frac{5}{6}\ge\frac{5}{6}\)

Vậy MIN   M = 5/6  khi  x = -1/3

25 tháng 6 2019

a, A = x^2 + 6x + 11

= x^2 + 6x + 9 + 2

= (x + 3)^2 + 2

làm tiếp

25 tháng 6 2019

b, x^2 - 20x + 101

= x^2  20x + 100 + 1

= (x - 10)^2 + 1

có (x - 10)^2 > 0 => (x - 10)^2 +  > 1

15 tháng 9 2016

a) \(A=x^2+6x+11\)

\(A=x^2+6x+9+2\)

\(A=\left(x+3\right)^2+2\)

Có: \(\left(x+3\right)^2\ge0\Rightarrow\left(x+3\right)^2+2\ge2\)

Dấu = xảy ra khi: \(\left(x+3\right)^2=0\Rightarrow x+3=0\Rightarrow x=-3\)

Vậy: \(Min_A=2\) tại \(x=-3\)

b) \(B=4x-x^2+1\)

\(B=-x^2+4x-4+5\)

\(B=-\left(x-2\right)^2+5\)

\(B=5-\left(x-2\right)^2\)

Có: \(\left(x-2\right)^2\ge0\)

\(\Rightarrow5-\left(x-2\right)^2\le5\)

Dấu = xảy ra khi: \(\left(x-2\right)^2=0\Rightarrow x-2=0\Rightarrow x=2\)

Vậy: \(Max_B=5\) tại \(x=2\)

20 tháng 1 2018

d, (x-1) (x+2) (x+3) (x+6)
=(x^2+2x-x-2) (x^2+6x+3x+18)
=(x^2-x^2) + (2x-x+6x-3x) = (-2+18)
=0            + (-8x)              =16
=                    x                =16:(-8)
=                  x                  =-2

\(a,x^2+x+1=\left(x^2+2.x.\frac{1}{2}+\frac{1}{4}\right)+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)

Vì: \(\left(x+\frac{1}{2}\right)^2\ge0,\forall x\)

\(\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4},\forall x\)

Dấu '' =  '' xảy ra khi : \(x+\frac{1}{2}=0\Rightarrow x=\frac{-1}{2}\)

Vậy GTLN của biểu thức = 3/4 khi x=-1/2

\(b,2+x-x^2=-x^2+x+2\)

\(=-\left(x^2-x-2\right)=-\left(x^2-2.x.\frac{1}{2}+\frac{1}{4}\right)+\frac{9}{4}\)

\(=-\left(x-\frac{1}{2}\right)^2+\frac{9}{4}\)

Vì: \(-\left(x-\frac{1}{2}\right)^2\le0,\forall x\)

\(\Rightarrow-\left(x-\frac{1}{2}\right)^2+\frac{9}{4}\le\frac{9}{4},\forall x\)

Dấu '' = '' xảy ra khi: x-1/2=0 => x=1/2

Vậy GTNN của biểu thức = 9/4 khi x=1/2

\(c,x^2-4x+1=\left(x^2-2.x.2+4\right)-3=\left(x-2\right)^2-3\)

Vì \(\left(x-2\right)^2\ge0,\forall x\Rightarrow\left(x-2\right)^2-3\ge-3,\forall x\)

Dấu ''='' xảy ra khi x-2=0 => x=2

Vậy GTLN của biểu thức = -3 khi x=2

Các câu khác tương tự

\(d,4x^2+4x+11=\left[\left(2x\right)^2+2.2x.1+1\right]+10=\left(2x+1\right)^2+10\)

Vì \(\left(2x+1\right)^2\ge0,\forall x\Rightarrow\left(2x+1\right)^2+10\ge10,\forall x\)

Dấu ''='' xảy ra khi 2x+1=0 => x=-1/2

Vậy GTNN của biểu thức =10 khi x=-1/2

\(e,3x^2-6x+1=3\left(x^2-2x+1\right)-2=3\left(x-1\right)^2-2\)

Vì \(3\left(x-1\right)^2\ge0,\forall x\Rightarrow3\left(x-1\right)^2-2\ge-2,\forall x\)

Dấu ''='' xảy ra khi x-1=0 => x=1

Vậy GTNN của biểu thức =-2 khi x=1

\(f,x^2-2x+y^2-4y+6=\left(x^2-2x+1\right)+\left(y^2-4y+4\right)+1\)

\(=\left(x-1\right)^2+\left(y-2\right)^2+1\)

Vì \(\left(x-1\right)^2\ge0,\forall x;\left(y-2\right)^2\ge0,\forall y\)

\(\Rightarrow\left(x-1\right)^2+\left(y-2\right)^2+1\ge1,\forall x,y\)

Dấu ''='' xảy ra khi \(\orbr{\begin{cases}x-1=0\\y-2=0\end{cases}\Rightarrow\orbr{\begin{cases}x=1\\y=2\end{cases}}}\)

Vậy GTNN của biểu thức =1 khi x=1 và y=2

10 tháng 7 2021

Bài 1 : 

a, \(A=x^2-4x+6=x^2-4x+4+2=\left(x-2\right)^2+2\ge2\)

Dấu ''='' xảy ra khi x = 2 

Vậy GTNN A là 2 khi x = 2 

b, \(B=y^2-y+1=y^2-2.\frac{1}{2}y+\frac{1}{4}+\frac{3}{4}=\left(y-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

Dấu ''='' xảy ra khi y = 1/2 

Vậy GTNN B là 3/4 khi y = 1/2 

c, \(C=x^2-4x+y^2-y+5=x^2-4x+4+y^2-y+\frac{1}{4}+\frac{3}{4}\)

\(=\left(x-2\right)^2+\left(y-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

Dấu ''='' xảy ra khi \(x=2;y=\frac{1}{2}\)

Vậy GTNN C là 3/4 khi x = 2 ; y = 1/2 

10 tháng 7 2021

Bài 3 : 

a, \(x^2-6x+10=x^2-2.3.x+9+1=\left(x-3\right)^2+1\ge1>0\)( đpcm )

b, \(-y^2+4y-5=-\left(y^2-4y+5\right)=-\left(y^2-4y+4+1\right)=-\left(y-2\right)^2-1< 0\)( đpcm )

Bài 4 : 

\(B=\left(x^2+y^2\right)=\left(x+y\right)^2-2xy\)

Thay (*) ta được : \(225-2\left(-100\right)=225+200=425\)

Bài 5 : 

\(\left(x+y\right)^2-\left(x-y\right)^2=\left(x+y-x+y\right)\left(x+y+x-y\right)\)

\(=2y.2x=4xy=VP\)( đpcm ) 

5 tháng 11 2017

Giải như sau.

(1)+(2)⇔x2−2x+1+√x2−2x+5=y2+√y2+4⇔(x2−2x+5)+√x2−2x+5=y2+4+√y2+4⇔√y2+4=√x2−2x+5⇒x=3y(1)+(2)⇔x2−2x+1+x2−2x+5=y2+y2+4⇔(x2−2x+5)+x2−2x+5=y2+4+y2+4⇔y2+4=x2−2x+5⇒x=3y

⇔√y2+4=√x2−2x+5⇔y2+4=x2−2x+5, chỗ này do hàm số f(x)=t2+tf(x)=t2+t đồng biến ∀t≥0∀t≥0
Công việc còn lại là của bạn ! 

30 tháng 9 2018

\(\left(x+6\right)\left(2x+1\right)=0\)

<=>  \(\orbr{\begin{cases}x+6=0\\2x+1=0\end{cases}}\)

<=>  \(\orbr{\begin{cases}x=-6\\x=-\frac{1}{2}\end{cases}}\)

Vậy....

hk tốt

^^