Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng tc của dãy tỉ số bằng nhau ta có :
\(\frac{x}{5}=\frac{y}{7}=\frac{x+y}{5+7}=\frac{24}{12}=2\)
\(\Rightarrow\begin{cases}x=60\\y=84\end{cases}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{3}=\frac{y}{5}=\frac{x+y}{3+5}=\frac{-24}{8}=-3\)
\(\frac{x}{3}=-3\Rightarrow x=\left(-3\right).3=-9\)
\(\frac{y}{5}=-3\Rightarrow y=\left(-3\right).5=-15\)
b) \(\frac{x}{5}=\frac{y}{8}=\frac{x-y}{5-8}=\frac{15}{-3}=-5\)
\(\frac{x}{5}=-5\Rightarrow x=\left(-5\right).5=-25\)
\(\frac{y}{8}=-5\Rightarrow y=\left(-5\right).8=-40\)
c) 7x=4y <=> x/4=y/7
\(\frac{x}{4}=\frac{y}{7}=\frac{x+y}{4+7}=\frac{12}{11}\)
\(\frac{x}{4}=\frac{12}{11}\Rightarrow x=\frac{12}{11}.4=\frac{48}{11}\)
\(\frac{y}{7}=\frac{12}{11}\Rightarrow y=\frac{12}{11}.7=\frac{84}{11}\)
d) tt câu c
e) x/5=y/8;z/3=y/12 <=> x/60=y/96=z/24
\(\frac{x}{60}=\frac{y}{96}=\frac{z}{24}=\frac{4x}{4.60}=\frac{2y}{2.96}=\frac{z}{24}=\frac{2y+z-4x}{192+24-240}=\frac{30}{-24}=\frac{-5}{4}\)
\(\frac{x}{60}=\frac{-5}{4}\) => x=-5/4.60=-75
y/96=-5/4 => y=-5/4.96=-120
z/24=-5/4 => z=-5/4.24=-30
1 Ta có x -24 = y
Suy ra x - y = 24
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
x/7 = y/3 = x-y/7-3 =24/4=6
suy ra x= 42
y = 18
a) Sửa đề \(\frac{-3}{x+1}=\frac{x+1}{-12}\)
<=> (x + 1)(x + 1) = (-12).(-3)
<=> (x + 1)2 = 36
<=> \(\orbr{\begin{cases}x+1=6\\x+1=-6\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=5\\x=-7\end{cases}}\)
b) \(\frac{x}{5}=-\frac{x+24}{3}\)
=> 3x = -(x + 24).5
<=> 3x = -5x - 120
<=> 8x = -120
<=> x = -15
Vậy x = -15
c) \(\frac{x+2}{x+1}=\frac{x-4}{x-2}\)
<=> \(\frac{x+2}{x+1}-1=\frac{x-4}{x-2}-1\)
<=> \(\frac{1}{x+1}=\frac{-2}{x-2}\)
<=> (x - 2).1 = -2(x + 1)
<=> x - 2 = -2x - 2
<=> 3x = 0
<=> x = 0
Vậy x = 0
d) \(\frac{x+4}{y+7}=\frac{4}{7}\)
<=> \(\frac{x+4}{4}=\frac{y+7}{7}=\frac{x+4+y+7}{4+7}=\frac{x+y+11}{11}=\frac{22+11}{11}=3\)(dãy tỉ số bằng nhau)
<=> \(\hept{\begin{cases}\frac{x+4}{4}=3\\\frac{y+7}{7}=3\end{cases}}\Leftrightarrow\hept{\begin{cases}x+4=12\\y+7=21\end{cases}}\Leftrightarrow\hept{\begin{cases}x=8\\y=14\end{cases}}\)
a ) \(-\frac{3}{x+1}=\frac{x+1}{-12}\)
\(\Leftrightarrow\)\(\left(x+1\right).\left(x+1\right)=-3.\left(-12\right)\)
\(\Leftrightarrow\)\(\left(x+1\right)^2=36\)
\(\Leftrightarrow\)\(\left(x+1\right)^2=\pm6\)
\(\Rightarrow\orbr{\begin{cases}x+1=6\\x+1=-6\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x=5\\x=-7\end{cases}}\)
b ) \(\frac{x}{5}=\frac{x+24}{3}\)
\(\Leftrightarrow\)\(3x=\left(x+24\right).5\)
\(\Leftrightarrow\)\(3x=5x+120\)
\(\Leftrightarrow\)\(-2x=120\)
\(\Leftrightarrow\)\(x=-60\)
d ) \(\frac{x+4}{7+y}=\frac{4}{7}\)
\(\Leftrightarrow\)\(\frac{x+4}{4}=\frac{7+y}{7}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{x+4}{4}=\frac{7+y}{7}=\frac{\left(x+y\right)+\left(4+7\right)}{4+7}=\frac{22+11}{11}=\frac{33}{11}=3\)
\(\Rightarrow\hept{\begin{cases}\frac{x+4}{4}=3\\\frac{7+y}{7}=3\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x+4=12\\7+y=21\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=8\\y=14\end{cases}}\)
a. Ta có: \(\frac{x}{5}=\frac{y}{7}=\frac{x-y}{5-7}=\frac{-12}{-2}=6\)
=> \(\hept{\begin{cases}x=6.5=30\\y=6.7=42\end{cases}}\)
b. x.8 = y. 16
=> \(\frac{x}{16}=\frac{y}{8}=\frac{y-x}{8-16}=\frac{64}{-8}=-8\)
=> \(\hept{\begin{cases}x=-8.16=-128\\y=-8.8=-64\end{cases}}\)
c.Ta có: \(\frac{x}{2}=\frac{y}{-5}=\frac{x-y}{2-\left(-5\right)}=\frac{x-y}{2+5}=\frac{7}{7}=1\)
=> \(\hept{\begin{cases}x=1.2=2\\y=1.\left(-5\right)=-5\end{cases}}\)
d. Ta có: xy = 10 => x = \(\frac{10}{y}\)(1)
Thay (1) vào \(\frac{x}{2}=\frac{y}{5}\), ta được:
\(\frac{10}{\frac{y}{2}}=\frac{y}{5}\)=> \(\frac{5}{y}=\frac{y}{5}\)
=> y2 = 25
=> y = + 5
y = 5 => x = \(\frac{10}{y}\)= \(\frac{10}{5}\)= 2
y = -5 => x = \(\frac{10}{y}\)= \(\frac{10}{-5}\) = -2
Vậy y = 5; x = 2
y = - 5: x = -2
a) Đặt \(\frac{x}{5}=\frac{y}{7}=k\left(k\ne0\right)\)
\(\Rightarrow\hept{\begin{cases}x=5k\\y=7k\end{cases}}\)
Mà \(x-y=-12\)
\(\Rightarrow5k-7k=-12\)
\(\Leftrightarrow-2k=-12\)
\(\Leftrightarrow k=6\)
\(\Rightarrow\hept{\begin{cases}x=5k=30\\y=7k=42\end{cases}}\)
Vậy ...
b) Ta có : \(x.8=y.16\Leftrightarrow\frac{x}{16}=\frac{y}{8}\)
Đặt \(\frac{x}{16}=\frac{y}{8}=k\left(k\ne0\right)\)
\(\Rightarrow\hept{\begin{cases}x=16k\\y=8k\end{cases}}\)
Mà \(y-x=64\)
\(\Rightarrow8k-16k=64\)
\(\Leftrightarrow-8k=64\)
\(\Leftrightarrow k=-2\)
\(\Rightarrow\hept{\begin{cases}x=16k=-32\\y=8k=-16\end{cases}}\)
Vậy ...
a)\(x-\frac{3}{5}=\frac{3}{5}\)
\(\Rightarrow x=\frac{3}{5}+\frac{3}{5}=\frac{6}{5}\)
b)\(|x|-\frac{4}{5}=\frac{2}{3}\\ \Rightarrow|x|=\frac{2}{3}+\frac{4}{5}=\frac{22}{15}\\ \Rightarrow|x|=\frac{22}{15}\\ \Rightarrow x=\frac{22}{15}\)
c)\(\frac{x}{-5}=\frac{24}{15}\\ \Rightarrow x=\frac{-5\cdot24}{15}=-8\)
d)\(\frac{x}{4}=\frac{y}{5} và x-y=21\)
Theo tính chất của dãy tỉ số bằng nhau , ta có :
\(\frac{x}{4}=\frac{y}{5}=\frac{x-y}{4-5}=\frac{21}{-1}=-21\)
Do đó :
\(\frac{x}{4}=-21\Rightarrow x=-84\)
\(\frac{y}{5}=-21\Rightarrow y=-105\)
\(x-\frac{3}{5}=\frac{3}{5}\)
\(x=\frac{3}{5}+\frac{3}{5}\)
\(x=\frac{6}{5}\)
\(\left|x\right|-\frac{4}{5}=\frac{2}{5}\)
\(\left|x\right|=\frac{2}{5}+\frac{4}{5}\)
\(\left|x\right|=\frac{6}{5}\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{6}{5}\\x=-\frac{6}{5}\end{cases}}\)
\(\frac{x}{-5}=\frac{24}{15}\)
\(\Rightarrow x.15=\left(-5\right).24\)
\(\Rightarrow x.15=-120\)
\(\Rightarrow x=-120:15\)
\(\Rightarrow x=-8\)
Áp dụng t/c dãy tỉ số bằng nhau, ta có:
\(\frac{x}{5}+\frac{y}{5}=\frac{x+y}{5+5}=\frac{24}{10}=2,4\)
=> \(\begin{cases}x=12\\y=12\end{cases}\)
bạn ơi