K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 8 2018

a. Ta có: \(\frac{x}{5}=\frac{y}{7}=\frac{x-y}{5-7}=\frac{-12}{-2}=6\)

=> \(\hept{\begin{cases}x=6.5=30\\y=6.7=42\end{cases}}\)

b. x.8 = y. 16

=> \(\frac{x}{16}=\frac{y}{8}=\frac{y-x}{8-16}=\frac{64}{-8}=-8\)

=> \(\hept{\begin{cases}x=-8.16=-128\\y=-8.8=-64\end{cases}}\)

c.Ta có:  \(\frac{x}{2}=\frac{y}{-5}=\frac{x-y}{2-\left(-5\right)}=\frac{x-y}{2+5}=\frac{7}{7}=1\)

=> \(\hept{\begin{cases}x=1.2=2\\y=1.\left(-5\right)=-5\end{cases}}\)

d. Ta có: xy = 10 => x = \(\frac{10}{y}\)(1)

Thay (1) vào \(\frac{x}{2}=\frac{y}{5}\), ta được:

\(\frac{10}{\frac{y}{2}}=\frac{y}{5}\)=> \(\frac{5}{y}=\frac{y}{5}\)

=> y2 = 25

=> y = + 5

y = 5 => x = \(\frac{10}{y}\)\(\frac{10}{5}\)= 2

y = -5 => x = \(\frac{10}{y}\)\(\frac{10}{-5}\) = -2

Vậy y = 5; x = 2

       y = - 5: x = -2

2 tháng 8 2018

a) Đặt  \(\frac{x}{5}=\frac{y}{7}=k\left(k\ne0\right)\)

\(\Rightarrow\hept{\begin{cases}x=5k\\y=7k\end{cases}}\)

Mà  \(x-y=-12\)

\(\Rightarrow5k-7k=-12\)

\(\Leftrightarrow-2k=-12\)

\(\Leftrightarrow k=6\)

\(\Rightarrow\hept{\begin{cases}x=5k=30\\y=7k=42\end{cases}}\)

Vậy ...

b) Ta có :  \(x.8=y.16\Leftrightarrow\frac{x}{16}=\frac{y}{8}\)

Đặt  \(\frac{x}{16}=\frac{y}{8}=k\left(k\ne0\right)\)

\(\Rightarrow\hept{\begin{cases}x=16k\\y=8k\end{cases}}\)

Mà  \(y-x=64\)

\(\Rightarrow8k-16k=64\)

\(\Leftrightarrow-8k=64\)

\(\Leftrightarrow k=-2\)

\(\Rightarrow\hept{\begin{cases}x=16k=-32\\y=8k=-16\end{cases}}\)

Vậy ...

1 tháng 10 2016

Bạn lần sau đăng ít thôi nhé :)

a/ \(\frac{x}{y}=5\Rightarrow\frac{x}{5}=\frac{y}{1}=\frac{x+y}{5+1}=\frac{18}{6}=3\)

=> x = 15 , y = 3

b/ \(\frac{x}{17}=\frac{y}{2}\Rightarrow\frac{2x}{34}=\frac{y}{2}=\frac{2x-y}{34-2}=\frac{64}{32}=2\)

=> x = 34, y = 4

c/ \(3x=7y\Rightarrow\frac{x}{7}=\frac{y}{3}=\frac{x-y}{7-3}=\frac{-16}{4}=-4\)

=> x = -28 , y=-12

d,e,f,g,h tương tự.

i/ \(x:y=5:6\Rightarrow\frac{x}{5}=\frac{y}{6}\)

Làm tương tự các câu còn lại.

j/ Đặt \(\frac{x}{4}=\frac{y}{7}=k\) \(\Rightarrow\begin{cases}x=4k\\y=7k\end{cases}\)

xy = 112 => 4k.7k = 112 => \(k^2=4\Rightarrow k=\pm2\)

Nếu k = 2 thì x = 8, y = 14

Nếu k = -2 thì x = -8 , y = -14

k/ \(-2x=3y\Rightarrow\frac{x}{3}=\frac{y}{-2}\)

Làm tương tự câu j.

2 tháng 10 2016

bn đăng lại ik

4 tháng 10 2016

Bài 1:

 \(\frac{x}{2}\) = \(\frac{y}{3}\) , \(\frac{y}{4}\) = \(\frac{z}{5}\)  và x + y - z = 10

\(\frac{x}{2}\) = \(\frac{y}{3}\) --> \(\frac{x}{2.4}\) = \(\frac{y}{3.4}\) => \(\frac{x}{8}\) = \(\frac{y}{12}\) 

\(\frac{y}{4}\) = \(\frac{z}{5}\) --> \(\frac{y}{4.3}\) = \(\frac{z}{5.3}\) => \(\frac{y}{12}\) = \(\frac{z}{15}\) 

=> \(\frac{x}{8}=\frac{y}{12}\)  = \(\frac{z}{15}\)             

- Áp dụng tính chất dãy tỉ số bằng nhau ta có:

 \(\frac{x}{8}\) = \(\frac{y}{12}\) = \(\frac{z}{15}\) --> \(\frac{x+y-z}{8+12-15}_{ }\) = \(\frac{10}{5}\) = 2

=> \(\frac{x}{8}\) = 2 --> x = 16

      \(\frac{y}{12}=2\) --> y = 24

      \(\frac{z}{15}=2\) --> z = 30

Vậy x = 16 ; y = 24 ; z = 30

Bài 2: 

               \(\frac{x}{2}=\frac{y}{5}\) và x . y = 10

  Đặt \(\frac{x}{2}=\frac{y}{5}=k\) 

Ta có: x = 2 . k ; y = 5 . k

          x . y = 10 => 2k . 5k = 10

                          => 10 . \(^{k^2}\) = 10

                          => \(^{k^2}\) = 1 --> k = -1 hoặc k = 1

          k = 1 ta có \(\frac{x}{2}=\frac{y}{5}=1\) --> x = 2 ; y = 5

          k = -1 ta có \(\frac{x}{2}=\frac{y}{5}=-1\) --> x = -2 ; y = -5

 

                                                              

4 tháng 10 2016

Bài 1:

\(\frac{x}{2}=\frac{y}{3}\Rightarrow\)\(\frac{x}{8}=\frac{y}{12}\)

\(\frac{y}{4}=\frac{z}{5}\Rightarrow\)\(\frac{y}{12}=\frac{z}{15}\)

=> \(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)

Áp dụng tc của dãy tỉ số bằng nhau ta có:

\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-15}=\frac{10}{5}=2\)

=>\(\begin{cases}x=16\\y=24\\z=30\end{cases}\)

Bài 2:

Đặt \(\frac{x}{2}=\frac{y}{5}=k\Rightarrow x=2k;y=5k\)

Có: xy=10

\(\Leftrightarrow2k\cdot5k=10\)

\(\Leftrightarrow k^2=1\Leftrightarrow\left[\begin{array}{nghiempt}k=1\\k=-1\end{array}\right.\)

Với k=1 thì x=2 ; y=5

Với k=-1 thì x=-2 ; y=-5

 

29 tháng 10 2017

a) x/5=y/2

= x+y/5+2=21/7=3

=> x/5=3=>x=15

    y/2=3=>x=6

29 tháng 10 2017

1) a) => \(\frac{x}{2}=\frac{y}{5}vàx+y=21\)

Áp dụng tính chất của dãy tỉ số bằng nhau , ta có :

\(\frac{x}{2}=\frac{y}{5}=\frac{x+y}{2+5}=\frac{21}{7}=3\)

\(\frac{x}{2}=3\Rightarrow x=2\cdot3=6\)

\(\frac{y}{5}=3\Rightarrow y=3\cdot5=15\)

c) =.> \(\frac{x}{7}=\frac{y}{5}vày-x=12\)

Áp dụng tính chất của dãy tỉ số bằng nhau , ta có :

\(\frac{x}{7}=\frac{y}{5}=\frac{y-x}{5-7}=\frac{12}{-2}=-6\)

*\(\frac{x}{7}=-6\Rightarrow x=-6\cdot7=-42\)

*\(\frac{y}{5}=-6\Rightarrow y=-6\cdot5=-30\)

13 tháng 10 2016

a) Đặt \(\frac{x}{2}=\frac{y}{5}=k\)

\(\Rightarrow x=2k\)

\(\Rightarrow y=5k\)

\(\Rightarrow xy=2k.5k=10k^2\)

\(\Rightarrow10k^2=10\)

\(\Rightarrow k^2=\frac{10}{10}=1\Rightarrow\left[\begin{array}{nghiempt}k=1\\k=-1\end{array}\right.\)

Với \(k=1\)

\(\Rightarrow x=2k=2.1=2\)

\(\Rightarrow y=5k\Rightarrow y=5.1=5\)

Với \(k=-1\)

\(\Rightarrow x=2k=-1.2=-2\)

\(\Rightarrow y=5k=-1.5=-5\)

 

13 tháng 10 2016

b) \(7x=3y\Rightarrow\frac{7x}{21}=\frac{3y}{21}\Rightarrow\frac{x}{7}=\frac{y}{3}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{x}{7}=\frac{y}{3}=\frac{x-y}{7-3}=\frac{16}{4}=4\)

  • \(x=4.7=28\)
  • \(y=4.3=12\)

Vậy: \(x=28,y=12\)

5 tháng 10 2021

Bài 5:

Theo đề ra, ta có:

\(\frac{x}{y}=\frac{2}{5}\Rightarrow\frac{x}{2}=\frac{y}{5}\)

Ta đặt: \(\frac{x}{2}=\frac{y}{5}=k\Rightarrow\hept{\begin{cases}x=2k\\y=5k\end{cases}}\)

\(\Rightarrow k^2=4\Rightarrow k=\pm2\)

Trường hợp 1: Với \(k=2\)

\(\Rightarrow\frac{x}{2}=2\Rightarrow x=2.2=4\)

\(\Rightarrow\frac{y}{5}=2\Rightarrow y=5.2=10\)

Trường hợp 2: Với \(k=-2\)

\(\Rightarrow\frac{x}{2}=-2\Rightarrow x=2.\left(-2\right)=-4\)

\(\Rightarrow\frac{y}{5}=-2\Rightarrow y=5.\left(-2\right)=-10\)

5 tháng 10 2021

Bài 4:

Áp dụng tính chất của dãy tỉ số bằng nhau

\(\frac{x-1}{2}=\frac{y+3}{4}=\frac{z-5}{6}\)

\(\Rightarrow\frac{3\left(x-1\right)}{3.2}=\frac{4\left(y+3\right)}{4.4}=\frac{5\left(z-5\right)}{5.6}\Rightarrow\frac{3x-3}{6}=\frac{4y+12}{16}=\frac{5z-25}{30}\)

\(=\frac{-\left(3x-3\right)-\left(4y+12\right)+\left(5z-25\right)}{-6-16+30}=\frac{\left(-3x-4y+5z\right)+3-12-25}{8}=\frac{50-34}{8}=2\)

\(\Rightarrow\frac{3x-3}{6}=2\Rightarrow3x-3=12\Rightarrow x=15\)

\(\Rightarrow\frac{4y+12}{16}=2\Rightarrow4y+12=32\Rightarrow y=5\)

\(\Rightarrow\frac{5z-25}{30}=2\Rightarrow5x-25=60\Rightarrow z=17\)

4 tháng 8 2020

Đặt \(\frac{x}{4}=\frac{y}{7}=k\Rightarrow\hept{\begin{cases}x=4k\\y=7k\end{cases}}\)(1)

Sửa : xy = 112 (2)

Thay (1) vào (2) ta có 

4k.7k = 112

=> 28k2 = 112

=> k2 = 4

=> k = \(\pm\)

Khi k = 2 => x = 8 ; y = 14

Khi k = -2 => x = -8 ; y = -14

Vậy các cặp (x;y) thỏa mãn bài toán là (8;14) ; (-8;-14)

b) Có : a + b = -21

Ta có \(\frac{x}{2}=\frac{y}{5}=\frac{x+y}{2+5}=\frac{-21}{7}=-3\)(dãy tỉ số bằng nhau)

=> x = -6 ; y = - 15

c) Ta có x - y = 16

Lại có : \(7x=3y\Rightarrow\frac{x}{3}=\frac{y}{7}=\frac{x-y}{3-7}=\frac{16}{-4}=-4\)(dãy tỉ số bằng nhau)

=> x = -12 ; y = - 28

d) Ta có x + y = - 22

Lại có \(\frac{x}{3}=\frac{y}{8}=\frac{x+y}{3+8}=\frac{-22}{11}=2\)

=> x = -6 ; y = -16

4 tháng 8 2020

a. Sửa đề : x/4 = y/7 và x + y = 142

Áp dụng t/c của dãy tỉ số bằng nhau, ta có :

\(\frac{x}{4}=\frac{y}{7}=\frac{x+y}{4+7}=\frac{142}{11}\)

Suy ra :

+) \(\frac{x}{4}=\frac{142}{11}\Leftrightarrow x=\frac{568}{11}\)

+) \(\frac{y}{7}=\frac{142}{11}\Leftrightarrow y=\frac{994}{11}\)

b. Áp dụng t/c của dãy tỉ số bằng nhau, ta có :

\(\frac{x}{2}=\frac{y}{5}=\frac{x+y}{2+5}=\frac{-21}{7}=-3\)

Suy ra :

+) \(\frac{x}{2}=-3\Leftrightarrow x=-6\)

+) \(\frac{y}{5}=-3\Leftrightarrow y=-15\)

c. \(7x=3y\Leftrightarrow\frac{x}{3}=\frac{y}{7}\)

Áp dụng t/c của dãy tỉ số bằng nhau, ta có :

\(\frac{x}{3}=\frac{y}{7}=\frac{x-y}{3-7}=\frac{16}{-4}=-4\)

Suy ra :

+) \(\frac{x}{3}=-4\Leftrightarrow x=-12\)

+) \(\frac{y}{7}=-4\Leftrightarrow y=-28\)

d. Áp dụng t/c của dãy tỉ số bằng nhau, ta có :

\(\frac{x}{3}=\frac{y}{8}=\frac{x+y}{3+8}=\frac{-22}{11}=-2\)

Suy ra :

+) \(\frac{x}{3}=-2\Leftrightarrow x=-6\)

+) \(\frac{y}{8}=-2\Leftrightarrow y=-16\)

25 tháng 7 2019

xin lỗi mn câu b -7/5->-7/3 nha

25 tháng 7 2019

\(\frac{x}{-3}=\frac{9}{y}\Leftrightarrow xy=-27\)

Mà \(-27=-3\cdot9=-1\cdot27=-9\cdot3=-27\cdot1\)

mặt khác x>ynên ta có các cặp số (x;y)={(9;-3),(27;-1),(1;-27),(3;-9)}

4 tháng 7 2017

Bài 1: \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{9}=\frac{y}{12};\frac{y}{3}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{20}\)

=>\(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}=\frac{2z}{18}=\frac{3y}{36}\)

Áp dụng tính chất của dãy tỉ số bằng nhau: \(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}=\frac{2z}{18}=\frac{3y}{36}=\frac{2x-3y+z}{18-36+20}=\frac{6}{2}=3\)

=>x=27;z=36;z=60

Bài 2: \(\frac{x}{2}=\frac{y}{5}=k\Rightarrow\hept{\begin{cases}x=2k\\y=5k\end{cases}}\Rightarrow xy=2k.5k=10k^2=40\Rightarrow k^2=4\Rightarrow\hept{\begin{cases}k=-2\\k=2\end{cases}}\)

+)k=-2 => x=-4;y=-5

+)k=2 => x=4;y=5

Vậy x=-4;y=-5 hoặc x=4;y=5

11 tháng 8 2016

1, ta co \(\frac{x}{5}=\frac{y}{6}=\frac{x}{20}=\frac{y}{24}\)

\(\frac{y}{8}=\frac{z}{7}=\frac{y}{24}=\frac{z}{21}\)

=>\(\frac{x}{20}=\frac{y}{24}=\frac{z}{21}=\frac{x+y-z}{20+24-21}=\frac{69}{23}=3\)

=>\(x=3\cdot20=60\)

    \(y=3\cdot24=72\)

    \(z=3\cdot21=63\)

11 tháng 8 2016

3. ta co \(\frac{x}{15}=\frac{y}{7}=\frac{z}{3}=\frac{t}{1}=\frac{x+y-z+t}{15-7+3-1}=\frac{10}{10}=1\)

=> \(x=1\cdot15=15\)

     \(y=1\cdot7=7\)

     \(z=1\cdot3=3\)

     \(t=1\cdot1=1\)