K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 10 2020

a. (x + 2y)2

= x2 + 4xy + 4y2 (hằng đẳng thức thứ nhất)

b. (x - 3y)(x + 3y)

= x2 - 9y2 (hằng đẳng thức thứ 3)

c. (5 - x)2

= 25 - 10x + x2 (hằng đẳng thức thứ 2)

Từ nay về sau bạn cố gắng tự làm những bài về hằng đẳng thức để tránh mất gốc nhé!

\(a.\left(x+2y\right)^2\)

\(=x^2+2.x.2y+\left(2y\right)^2\)

\(=x^2+4xy+4y^2\)

\(b.\left(x-3y\right)\left(x+3y\right)\)

\(=x^2-\left(3y\right)^2\)

\(=x^2-9y^2\)

\(c.\left(5-x\right)^2\)

\(=5^2-2.5.x+x^2\)

\(=25-10x+x^2\)

Học tốt! :)

22 tháng 9 2021

giúp mình nha mình cần gấp, cảm ơn mọi người trước

22 tháng 9 2021

a) (2x+3)2

=4x^2+12x+9

b) (x-2/5)3

=x^3-1.2x^2+0.48x-0.064

c) (4x2+1)3

=(4x^2)^3+12x^4+12x^2+1

 

 

 

12 tháng 9 2023

\(a)\left(x+3y\right)\left(x-2y\right)\\ =x^3-2xy+3xy-6y^2\\ =x^2+xy-6y^2\\ b)\left(2x-y\right)\left(y-5x\right)\\ = 2xy-10x^2-y^2+5xy\\ =7xy-10x^2-y^2\\ c)\left(2x-5y\right)\left(y^2-2xy\right)\\ =2xy^2-4x^2y-5y^3+10xy^2\\ =12xy^2-4x^2y-5y^2\\ d)\left(x-y\right)\left(x^2-xy-y^2\right)\\ =x^3-x^2y-xy^2-x^2y+xy^2+y^3\\ =x^3-2x^2y+y^3\)

21 tháng 8 2023

Bài 12:

a) \(\left(\dfrac{1}{2}x+4\right)^2\)

\(=\left(\dfrac{1}{2}x\right)^2+2\cdot\dfrac{1}{2}x\cdot4+4^2\)

\(=\dfrac{1}{4}x^2+4x+16\)

b) \(\left(7x-5y\right)^2\)

\(=\left(7x\right)^2-2\cdot7x\cdot5y+\left(5y\right)^2\)

\(=49x^2-70xy+25y^2\)

c) \(\left(6x^2+y^2\right)\left(y^2-6x^2\right)\)

\(=\left(y^2+6x^2\right)\left(y^2-6x^2\right)\)

\(=y^4-36x^4\)

d) \(\left(x+2y\right)^2\)

\(=x^2+2\cdot x\cdot2y+\left(2y\right)^2\)

\(=x^2+4xy+4y^2\)

e) \(\left(x-3y\right)\left(x+3y\right)\)

\(=x^2-\left(3y\right)^2\)

\(=x^2-9y^2\)

f) \(\left(5-x\right)^2\)

\(=5^2-2\cdot5\cdot x+x^2\)

\(=25-10x+x^2\)

21 tháng 8 2023

\(11,\)

\(a,\left(7x+4\right)^2-\left(7x+4\right)\left(7x-4\right)\)

\(=\left(7x+4\right)\left(7x+4-7x+4\right)\)

\(=\left(7x+4\right).8=56x+32\)

\(b,\left(x+2y\right)^2-6xy\left(x+2y\right)\)

\(=\left(x+2y\right)\left(x+2y-6xy\right)\)

31 tháng 10 2021

Bài 3: 

a: \(x^2-16=\left(x-4\right)\cdot\left(x+4\right)\)

b: \(x^2+2x+1-y^2=\left(x+1+y\right)\left(x+1-y\right)\)

c: \(=\left(x-y\right)^2-4=\left(x-y-2\right)\left(x-y+2\right)\)

2 tháng 10 2021

2a) pt <=> (x + 6)^2 = 0

<=> x = -6

b) pt <=> (4x - 1)^2 = 0

<=> x = 1/4

c) pt<=> (x + 1)^3 = 0

<=> x = -1

Bài 1:

a: Ta có: \(A=\left(4x+3y\right)^2+\left(4x-3y\right)^2\)

\(=16x^2+24xy+9y^2+16x^2-24xy+9y^2\)

\(=32x^2+18y^2\)

b: Ta có: \(B=\left(x-2\right)^3-\left(x+2\right)^3\)

\(=x^3-6x^2+12x-8-x^3-6x^2-12x-8\)

\(=-12x^2-24\)

Bài 2: 

a: Ta có: \(x^2+12x+36=0\)

\(\Leftrightarrow x+6=0\)

hay x=-6

b: Ta có: \(16x^2-8x+1=0\)

\(\Leftrightarrow4x-1=0\)

hay \(x=\dfrac{1}{4}\)

Bài 1: 

a: Ta có: \(A=\left(4x+3y\right)^2+\left(4x-3y\right)^2\)

\(=16x^2+24xy+9y^2+16x^2-24xy+9y^2\)

\(=32x^2+18y^2\)

b: Ta có: \(B=\left(x-2\right)^3-\left(x+2\right)^3\)

\(=x^3-6x^2+12x-8-x^3-6x^2-12x-8\)

\(=-12x^2-24\)

c: Ta có: \(C=\left(x+2y\right)^2+2\left(x+2y\right)\left(x-2y\right)+\left(x-2y\right)^2\)

\(=\left(x+2y+x-2y\right)^2\)

\(=4x^2\)

31 tháng 10 2021

\(=\left(x^2+2x+1\right)+\left(y^2-8y+16\right)=\left(x+1\right)^2+\left(y-4\right)^2\ge0\forall x,y\)

dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=4\end{matrix}\right.\)

Trl câu nào vậy ạ :(

 

13 tháng 8 2023

a) M = (x + 3y)² - (x - 3y)²

= [(x + 3y) - (x - 3y)][(x + 3y) + (x - 3y)]

= (x + 3y - x + 3y)(x + 3y + x - 3y)

= 6y.2x

= 12xy

b) Q = (x - y)² - 4(x - y)(x + 2y) + 4(x + 2y)²

= [(x - y) - 2(x + 2y)]²

= (x - y - 2x - 4y)²

= (-x - 5y)²

13 tháng 8 2023

a)M=x^2+6xy+y^2-x^2-6xy+y^2

=2y^2

13 tháng 8 2023

a) M = (x + 3y)² - (x - 3y)²

= [(x + 3y) - (x - 3y)][(x + 3y) + (x - 3y)]

= (x + 3y - x + 3y)(x + 3y + x - 3y)

= 6y.2x

= 12xy

b: Q=(x-y)^2-2(x-y)(2x+4y)+(2x+4y)^2

=(x-y-2x-4y)^2

=(-x-5y)^2

=x^2+10xy+25y^2

1 tháng 11 2021

Bài 1:

a) \(2x\left(x^2-5x+6\right)=2x^3-10x^2+12x\)

b) \(\left(7x^5+14x^2y^3-28x^3y^2\right):7x^2=x^3+2y^3-4xy^2\)

Bài 2:

\(x^2+y^2+2x-8y+17=\left(x^2+2x+1\right)+\left(y^2-8y+16\right)=\left(x+1\right)^2+\left(y-4\right)^2\ge0\forall x,y\)