Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) \(=y^3-1+\frac{2}{3}x^3y-2xy+\frac{1}{3}x^2y^3-y^3\)
\(=\frac{2}{3}x^3y+\frac{1}{3}x^2y^3-2xy-1\)
Vì dài quá nên mình chỉ có thể trả lời được mấy câu thôi
Bài 1:
27x3 - 8 : (6x + 9x2 +4)
= (3x - 2) (9x2 + 6x + 4) : (9x2 + 6x + 4)
= 3x - 2
Bài 3:
a, 81x4 + 4 = (9x2)2 + 36x2 + 4 - 36x2
= (9x2 + 2)2 - (6x)2
= (9x2 + 6x + 2)(9x2 - 6x + 2)
b, x2 + 8x + 15 = x2 + 3x + 5x + 15
= x(x + 3) + 5(x + 3)
= (x + 3)(x + 5)
c, x2 - x - 12 = x2 + 3x - 4x - 12
= x(x + 3) - 4(x + 3)
= (x + 3) (x - 4)
Câu 1:
(27x3 - 8) : (6x + 9x2 + 4)
= (3x - 2)(9x2 + 6x + 4) : (6x + 9x2 + 4)
= 3x - 2
Câu 2:
a) (3x - 5)(2x+ 11) - (2x + 3)(3x + 7)
= 6x2 + 33x - 10x - 55 - 6x2 - 14x - 9x - 21
= -76
⇒ đccm
b) (2x + 3)(4x2 - 6x + 9) - 2(4x3 - 1)
= 8x3 + 27 - 8x3 + 2
= 29
⇒ đccm
Câu 3:
a) 81x4 + 4
= (9x2)2 + 22
= (9x2 + 2)2 - (6x)2
= (9x2 - 6x + 2)(9x2 + 6x + 2)
b) x2 + 8x + 15
= x2 + 3x + 5x + 15
= x(x + 3) + 5(x + 3)
= (x + 3)(x + 5)
c) x2 - x - 12
= x2 - 4x + 3x - 12
= x(x - 4) + 3(x - 4)
= (x - 4)(x + 3)
a ) \(\left(5x+2y\right)^2=25x^2+20xy+4y^2\)
b ) \(\left(-3x+2\right)^2=9x^2-12x+4\)
c ) \(\left(\dfrac{2}{3}x+\dfrac{1}{3}y\right)^2=\dfrac{4}{9}x^2+\dfrac{4}{9}xy+\dfrac{1}{9}y^2\)
d ) \(\left(2x-\dfrac{5}{2}y\right)^2=4x^2-10xy+\dfrac{25}{4}y^2\)
e ) \(\left(x+\dfrac{4}{3}y^2\right)^2=x^2+\dfrac{8}{3}xy^2+\dfrac{16}{9}y^4\)
f ) \(\left(2x^2+\dfrac{5}{3}y\right)^2=4x^4+\dfrac{20}{3}x^2y+\dfrac{25}{9}y^2\)
2.
a. Ta có: x + y = 5 ⇒ x = 5 - y
Thay vào A ta được:
\(A=3\left(5-y\right)^2+3y^2-2y+6\left(5-y\right).y-100\)
\(A=75-30y+3y^2+3y^2-2y+30y-6y^2-100\)
\(A=75-100=-25\)
b. Ta có: x - y = 7 ⇒ x = 7 + y
Thay x = 7 + y vào A ta được:
\(A=\left(7+y\right)\left(7+y+2\right)+y\left(y-2\right)-2\left(7+y\right).y+37\)
\(A=y^2+16y+63+y^2-2y-14y-2y^2+37\)
\(A=100\)
c. Ta có: x + 2y = 5 ⇒ x = 5 - 2y
Thay vào A ta có:
\(A=\left(5-2y\right)^2+4y^2-2\left(5-2y\right)+10+4\left(5-2y\right).y-4y\)
\(A=25-20y+4y^2+4y^2-19+4y+10+20y-8y^2-4y\)
\(A=16\)
a) \(\dfrac{1}{8}x^3y^3-27=\left(\dfrac{1}{2}xy\right)^3-3^3=\left(\dfrac{1}{2}xy-3\right)\left(\dfrac{1}{4}x^2y^2+\dfrac{1}{6}xy+9\right)\)
b)\(\dfrac{8}{125}x^3+27y^3=\left(\dfrac{2}{5}x\right)^3+\left(3y\right)^3=\left(\dfrac{2}{5}x+3y\right)\left(\dfrac{4}{25}x^2-\dfrac{6}{5}xy+9y^2\right)\)
c) \(0.008x^6-27y^3=\left(0.2x^2\right)^3-\left(3y\right)^3=\left(0.2x^2-3y\right)\left(0.04x^4+\dfrac{3}{5}x^2y+9y^2\right)\)
d)\(\left(2x+y\right)^3-\left(x-y\right)^3=\left(2x+y-x+y\right)[\left(2x+y\right)^2+\left(2x+y\right)\left(x-y\right)+\left(x-y\right)^2]\\ =\left(x+2y\right)\left(4x^2+4xy+y^2+2x^2-2xy+xy-y^2+x^2-2xy+y^2\right)\\ =\left(x+2y\right)\left(6x^2+xy+y^2\right)\)
Bài 1:
a) \(\dfrac{1}{8}x^3y^3-27\)
\(=\left(\dfrac{1}{2}xy\right)^3-3^3\)
\(=\left(\dfrac{1}{2}xy-3\right)\left[\left(\dfrac{1}{2}xy\right)^2+\dfrac{1}{2}xy.3+3^2\right]\)
\(=\left(\dfrac{1}{2}xy-3\right)\left(\dfrac{1}{4}xy+\dfrac{3}{2}xy+9\right)\)
\(=\left(\dfrac{1}{2}xy-3\right)\left(\dfrac{7}{4}xy+9\right)\)
b) \(\dfrac{8}{125}x^3+\dfrac{1}{8}y^3\)
\(=\left(\dfrac{2}{5}x\right)^3+\left(\dfrac{1}{2}y\right)^3\)
\(=\left(\dfrac{2}{5}x+\dfrac{1}{2}y\right)\left[\left(\dfrac{2}{5}x\right)^2-\dfrac{2}{5}x.\dfrac{1}{2}y+\left(\dfrac{1}{2}y\right)^2\right]\)
\(=\left(\dfrac{2}{5}x+\dfrac{1}{2}y\right)\left(\dfrac{4}{25}x-\dfrac{1}{5}xy+\dfrac{1}{4}y\right)\)
c) \(0.008x^6-27y^3\)
\(=\left(\dfrac{1}{5}x^2\right)^3-\left(3y\right)^3\)
\(=\left(\dfrac{1}{5}x^2-3y\right)\left[\left(\dfrac{1}{5}x^2\right)^2+\dfrac{1}{5}x^2.3y+\left(3y\right)^2\right]\)
\(=\left(\dfrac{1}{5}x^2-3y\right)\left(\dfrac{1}{25}x^4+\dfrac{3}{5}x^2y+9y^2\right)\)
d) \(\left(2x+y\right)^3-\left(x-y\right)^3\)
\(=\left[\left(2x+y\right)-\left(x-y\right)\right]\left[\left(2x+y\right)^2+\left(2x+y\right)\left(x-y\right)+\left(x-y\right)^2\right]\)
\(=\left(2x+y-x+y\right)\left(4x^2+4xy+y^2+2x^3-2xy+xy-y^2+x^2-2xy+y^2\right)\)
\(=\left(x-2y\right)\left(4x^2+2x^3+xy\right)\)
Bài 1:
a) \(\left(x-1\right)\left(x+1\right)\left(x+2\right)\)
\(=\left(x^2-1\right)\left(x+2\right)\)
\(=x^3+x-2\)
b) \(\dfrac{1}{2}x^2y^2\left(2x+y\right)\left(2x-y\right)\)
\(=\dfrac{1}{2}x^2y^2\cdot\left(4x^2-y^2\right)\)
\(=2x^4y^2-\dfrac{1}{2}x^2y^4\)
Bài 2:
a) \(2x\cdot\left(x-5\right)-x\left(2x+3\right)=26\)
\(\Rightarrow2x^2-10x-2x^2-3x=26\)
\(\Rightarrow-13x=26\)
\(\Rightarrow x=2\)
b) \(\left(3y^2-y+1\right)\cdot\left(y-1\right)+y^2\cdot\left(4-3y\right)-\dfrac{5}{2}=0\)
\(\Rightarrow3y^3-3y^2-y^2+y+y-1+4y^2-3y^3-\dfrac{5}{2}=0\)
\(\Rightarrow2y+\dfrac{7}{5}=0\)
\(\Rightarrow2y=-1,4\)
\(\Rightarrow y=-0,7\)
c) \(2x^2+3\left(x-1\right)\cdot\left(x+1\right)=5x\left(x+1\right)\)
\(\Rightarrow2x^2+3\left(x^2-1\right)=5x^2+5x\)
\(\Rightarrow2x^2+3x^2-3=5x^2+5x\)
\(\Rightarrow5x^2-5x^2-5x=3\)
\(\Rightarrow-5x=3\)
\(\Rightarrow x=0,6\)