K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 6 2020

\(\frac{B}{3}=\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+...+\frac{1}{3^{2006}}\)

\(\frac{2B}{3}=B-\frac{B}{3}=\frac{1}{3}-\frac{1}{3^{2006}}\Rightarrow2B=1-\frac{1}{2^{2005}}\Rightarrow B=\frac{1}{2}-\frac{1}{2.3^{2005}}< \frac{1}{2}\)

7 tháng 1 2016

.........................................

14 tháng 1 2016

Ta có:3B\(\frac{1}{3}+\frac{1}{3}^2+\frac{1}{3}^3+...+\frac{1}{3}^{2003}+\frac{1}{3}^{2004}\)

B=\(\frac{1}{3}+\frac{1}{3}^2+\frac{1}{3}^3+..+\frac{1}{3}^{2003}+\frac{1}{3}^{2004}+\frac{1}{3}^{2005}\)

\(\Rightarrow\)2B=1-\(\frac{1}{3}^{2005}\)

\(\Rightarrow\)B=\(\frac{1-\frac{1}{3}^{2005}}{2}\)

\(\Rightarrow\)B=\(\frac{1-\frac{1}{3}^{2005}}{2}<\frac{1}{2}\)

\(\Rightarrow\)B<\(\frac{1}{2}\)

6 tháng 3 2017

\(B=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2004}}+\frac{1}{3^{2005}}\)

\(\Leftrightarrow2B=3\left(1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2004}}+\frac{1}{3^{2005}}\right)\)

\(\Leftrightarrow2B=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2003}}+\frac{1}{3^{2004}}\)

\(\Leftrightarrow2B-B=\left(1+\frac{1}{3}+...+\frac{1}{3^{2004}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2005}}\right)\)

\(\Leftrightarrow B=1-\frac{1}{3^{2005}}\)

\(\Leftrightarrow B=1-\frac{1}{3^{2005}}< \frac{1}{2}\)

Vậy \(B< \frac{1}{2}\) (Đpcm)

6 tháng 3 2017

\(B=\dfrac{1}{3}+\dfrac{1}{3^2}+..+\dfrac{1}{3^{2004}}+\dfrac{1}{3^{2005}}\\ \)

\(C=3B=1+\dfrac{1}{3}+..+\dfrac{1}{3^{2004}}\)

\(C-B=1-\dfrac{1}{3^{3005}}\)

\(B=\dfrac{1}{2}-\dfrac{1}{2.3^{2005}}< \dfrac{1}{2}\)

21 tháng 9 2015

 

\(\frac{B}{3}=\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2006}}\)

\(\frac{2B}{3}=B-\frac{B}{3}=\frac{1}{3}-\frac{1}{3^{2006}}\)

\(2B=1-\frac{1}{3^{2005}}\Rightarrow B=\frac{1}{2}-\frac{1}{2.3^{2005}}<\frac{1}{2}\)

1 tháng 8 2015

\(B=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2014}}+\frac{1}{3^{2015}}\)

\(3B=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2003}}+\frac{1}{3^{2004}}\)

\(3B-B=\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2003}}+\frac{1}{3^{2004}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2014}}+\frac{1}{3^{2015}}\right)\)

\(2B=1-\frac{1}{3^{2015}}\)

\(B=\frac{1-\frac{1}{3^{2015}}}{2}\)

Mà \(1-\frac{1}{3^{2015}}<1\)

\(\Rightarrow B<\frac{1}{2}\)

Vậy ____________

 

3 tháng 2 2017

Câu của đặng phương thảo sai rồi ở 3b-b thì là 3^2005 chứ không phải là 3^ 2015

31 tháng 1 2016

<=> 2B = \(3.\left(\frac{1}{3^1}+\frac{1}{3^2}+\frac{1}{3^3}+....+\frac{1}{3^{2005}}\right)\)

<=>  2B =  \(1+\frac{1}{3^1}+\frac{1}{3^2}+\frac{1}{3^3}+....+\frac{1}{3^{2004}}\)

<=> 2B - B = \(\left(1+\frac{1}{3^1}+\frac{1}{3^2}+\frac{1}{3^3}+....+\frac{1}{3^{2004}}\right)-\left(\frac{1}{3^1}+\frac{1}{3^2}+\frac{1}{3^3}+....+\frac{1}{3^{2005}}\right)\)

=> B =  \(1-\frac{1}{3^{2005}}\)

31 tháng 1 2016

Bổ xung : Vì \(1-\frac{1}{3^{2005}}\)\(\frac{1}{2}\)
=> B < \(\frac{1}{2}\)

2 tháng 6 2015

a)ta có 3B=1+1/3+1/3^2+........+1/3^2003+1/3^2004

             B=    1/3+1/3^2+........+1/3^2003+1/3^2004+1/3^2005

suy ra 2B=1-1/3^2005

    suy ra B=\(\frac{1-\frac{1}{3}^{2005}}{2}\)

suy ra B=1/2-1/3^2005/2 bé hơn 1/2

từ đấy suy ra B bé hơn 1/2