K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 9 2015

 

\(\frac{B}{3}=\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2006}}\)

\(\frac{2B}{3}=B-\frac{B}{3}=\frac{1}{3}-\frac{1}{3^{2006}}\)

\(2B=1-\frac{1}{3^{2005}}\Rightarrow B=\frac{1}{2}-\frac{1}{2.3^{2005}}<\frac{1}{2}\)

26 tháng 8 2019

a, \(A=\frac{1}{2}+\left[\frac{1}{2}\right]^2+\left[\frac{1}{2}\right]^3+...+\left[\frac{1}{2}\right]^{99}\)

\(2A=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{97}}+\frac{1}{2^{98}}\)

\(2A-A=\left[1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{97}}+\frac{1}{2^{98}}\right]-\left[\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{99}}\right]\)

\(A=1-\frac{1}{2^{99}}\)

Do đó A < 1

b, \(B=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}\)

\(3B=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{98}}\)

\(3B-B=\left[1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{98}}\right]-\left[1+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}\right]\)

\(2B=1-\frac{1}{3^{99}}\)

\(B=\frac{1-\frac{1}{3^{99}}}{2}< \frac{1}{2}\)

17 tháng 1 2020

Ta có: \(n^2>n^2-1=n^2-n+n-1=\left(n+1\right)\left(n-1\right)\)

Lúc đó:

\(B=\frac{1}{2^3}+\frac{1}{3^3}+\frac{1}{4^3}+...+\frac{1}{2019^3}\)

\(< \frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{2018.2019.2020}\)

\(2B< \frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{2018.2019.2020}\)

\(=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{2018.2019}-\frac{1}{2019.2020}\)

\(=\frac{1}{2}-\frac{1}{2019.2020}< \frac{1}{2}\)

\(2B< \frac{1}{2}\Rightarrow B< \frac{1}{2^2}\)

Vậy \(B=\frac{1}{2^3}+\frac{1}{3^3}+\frac{1}{4^3}+...+\frac{1}{2019^3}< \frac{1}{2^2}\left(đpcm\right)\)

20 tháng 1 2020

thank you bn nha

15 tháng 8 2016

B=\(\frac{1}{2}+\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3+...+\left(\frac{1}{2}\right)^{99}\)

=> 2B=\(2\left[\left(\frac{1}{2}\right)+\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3+...+\left(\frac{1}{2}\right)^{99}\right]\)

          =\(1+\frac{1}{2}+\left(\frac{1}{2}\right)^2+...+\left(\frac{1}{2}\right)^{98}\)

=>2B-B=\(\left[1+\frac{1}{2}+\left(\frac{1}{2}\right)^2+...+\left(\frac{1}{2}\right)^{98}\right]-\left[\frac{1}{2}+\left(\frac{1}{2}\right)^2+...+\left(\frac{1}{2}\right)^{99}\right]\)

=>B=\(1-\left(\frac{1}{2}\right)^{99}< 1\)

=> B<1

7 tháng 1 2016

.........................................

2 tháng 6 2020

\(\frac{B}{3}=\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+...+\frac{1}{3^{2006}}\)

\(\frac{2B}{3}=B-\frac{B}{3}=\frac{1}{3}-\frac{1}{3^{2006}}\Rightarrow2B=1-\frac{1}{2^{2005}}\Rightarrow B=\frac{1}{2}-\frac{1}{2.3^{2005}}< \frac{1}{2}\)

14 tháng 1 2016

Ta có:3B\(\frac{1}{3}+\frac{1}{3}^2+\frac{1}{3}^3+...+\frac{1}{3}^{2003}+\frac{1}{3}^{2004}\)

B=\(\frac{1}{3}+\frac{1}{3}^2+\frac{1}{3}^3+..+\frac{1}{3}^{2003}+\frac{1}{3}^{2004}+\frac{1}{3}^{2005}\)

\(\Rightarrow\)2B=1-\(\frac{1}{3}^{2005}\)

\(\Rightarrow\)B=\(\frac{1-\frac{1}{3}^{2005}}{2}\)

\(\Rightarrow\)B=\(\frac{1-\frac{1}{3}^{2005}}{2}<\frac{1}{2}\)

\(\Rightarrow\)B<\(\frac{1}{2}\)

6 tháng 3 2017

\(B=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2004}}+\frac{1}{3^{2005}}\)

\(\Leftrightarrow2B=3\left(1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2004}}+\frac{1}{3^{2005}}\right)\)

\(\Leftrightarrow2B=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2003}}+\frac{1}{3^{2004}}\)

\(\Leftrightarrow2B-B=\left(1+\frac{1}{3}+...+\frac{1}{3^{2004}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2005}}\right)\)

\(\Leftrightarrow B=1-\frac{1}{3^{2005}}\)

\(\Leftrightarrow B=1-\frac{1}{3^{2005}}< \frac{1}{2}\)

Vậy \(B< \frac{1}{2}\) (Đpcm)

6 tháng 3 2017

\(B=\dfrac{1}{3}+\dfrac{1}{3^2}+..+\dfrac{1}{3^{2004}}+\dfrac{1}{3^{2005}}\\ \)

\(C=3B=1+\dfrac{1}{3}+..+\dfrac{1}{3^{2004}}\)

\(C-B=1-\dfrac{1}{3^{3005}}\)

\(B=\dfrac{1}{2}-\dfrac{1}{2.3^{2005}}< \dfrac{1}{2}\)