Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo đề bài :
72x + 72x+2 = 2450
=> 72x . (1 + 72) = 2450
=> 72x . (1 + 49) = 2450
=> 72x . 50 = 2450
=> 72x = 49
=> 2x = 2
=> x = 1
Cho mình !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
72x+72x+2=2450
72x x (1+72)=2450
72x x 50 =2450
72x=2450:50
72x=49=72
suy ra 2x=2
suy ra x=1
\(A=-\left|2x-1\right|\)
Do \(-\left|2x-1\right|\le0\)
\(\Rightarrow Max\)\(A=-0=0\)
Vậy Max A=0 khi x=\(\frac{1}{2}\)
\(B=3-\left|2x-1\right|\)
Do \(\left|2x-1\right|\ge0\)
\(\Rightarrow Max\)\(B=3-0=3\)
Vậy \(Max\)\(B=3\)\(Khi\)\(x=\frac{1}{2}\)
\(C=-\left|2x-1\right|+1\)
Do \(-\left|2x-1\right|\le0\)
\(\Rightarrow Max\)\(C=0+1=1\)
Vậy \(Max\)\(C=1\)\(khi\)\(x=\frac{1}{2}\)
\(\Leftrightarrow3.\left(7x^2+1\right)=4.\left(8x^2-2\right)\)
\(\Leftrightarrow21x^2+3=32x^2-8\)
\(\Leftrightarrow21x^2+3-32x^2+8=0\)
\(\Leftrightarrow-11x^2+11=0\)
\(\Leftrightarrow-11\left(x^2-1\right)=0\)
\(\Leftrightarrow x^2-1=0\)
\(\Leftrightarrow x^2=1\)
\(\Leftrightarrow x=1\)
#quankun^^
\(\left(7x^2+1\right):4=\left(8x^2-2\right):3\)
\(\frac{7x^2+1}{4}=\frac{8x^2-2}{3}\)
\(\left(7x^2+1\right).3=\left(8x^2-2\right).4\)
\(21x^2+3=32x^2-2\)
\(21x^2-32x^2=-2-3\)
\(-11x^2=-5\)
\(x^2=\frac{5}{11}\)
\(x^2=\sqrt{\frac{5}{11}}=\frac{\sqrt{55}}{11}\)
bai 1.
giai chi tiet cho ban mot bai
\(x\ge\)0 (vi neu x<0 thi ve trai luon >0 VP <0 vo ly)
=>x+3>0=>Ix+3I=x+3
x+4>0=> Ix+4I=x+4
Ix+3I+Ix+4I=(x+3)+(x+4)=2x+7
2x+7=3x
7=3x-2x=x
x=7
Bài 1: \(x\).(\(x-y\)) = \(\dfrac{3}{10}\) và y(\(x-y\)) = - \(\dfrac{3}{50}\)
\(x\)(\(x\) - y) - y(\(x\) - y) = \(\dfrac{3}{10}\) - ( - \(\dfrac{3}{50}\))
(\(x-y\)).(\(x-y\)) = \(\dfrac{3}{10}\) + \(\dfrac{3}{50}\)
(\(x-y\))2 = \(\dfrac{15}{50}\) + \(\dfrac{3}{50}\)
(\(x\) - y)2 = \(\dfrac{9}{25}\) = (\(\dfrac{3}{5}\))2
\(\left[{}\begin{matrix}x-y=-\dfrac{3}{5}\\x-y=\dfrac{3}{5}\end{matrix}\right.\)
TH1 \(x-y=-\dfrac{3}{5}\) ⇒ \(\left\{{}\begin{matrix}x.\left(-\dfrac{3}{5}\right)=\dfrac{3}{10}\\y.\left(-\dfrac{3}{5}\right)=-\dfrac{3}{50}\end{matrix}\right.\)
⇒ \(\left\{{}\begin{matrix}x=\dfrac{3}{10}:\left(-\dfrac{3}{5}\right)=\dfrac{-1}{2}\\y=-\dfrac{3}{50}:\left(-\dfrac{3}{5}\right)=\dfrac{1}{10}\end{matrix}\right.\)
TH2: \(x-y=\dfrac{3}{5}\) ⇒ \(\left\{{}\begin{matrix}x.\dfrac{3}{5}=\dfrac{3}{10}\\y.\dfrac{3}{5}=-\dfrac{3}{50}\end{matrix}\right.\)
⇒ \(\left\{{}\begin{matrix}x=\dfrac{3}{10}:\dfrac{3}{5}=\dfrac{1}{2}\\y=-\dfrac{3}{50}:\dfrac{3}{5}=-\dfrac{1}{10}\end{matrix}\right.\)
Vậy (\(x;y\) ) = (- \(\dfrac{1}{2}\); \(\dfrac{1}{10}\)); (\(\dfrac{1}{2}\); - \(\dfrac{1}{10}\))
54.204/255.45=54.(5.4)4/(52)5.45=58.44/510.45=1/100
hk hiểu chỗ nào ns lại nhá