Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\frac{1}{99}-\frac{1}{99.98}-...-\frac{1}{3.2}-\frac{1}{2.1}\)
\(=\frac{1}{99}-\left(\frac{1}{99.98}+...+\frac{1}{3.2}+\frac{1}{2.1}\right)\)
đặt \(A=\frac{1}{99.98}+...+\frac{1}{3.2}+\frac{1}{2.1}\)
\(A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{98.99}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{98}-\frac{1}{99}\)
\(A=1-\frac{1}{99}\)
\(A=\frac{98}{99}\)
thay A vào, ta được :
\(\frac{1}{99}-\frac{98}{99}=\frac{-97}{99}\)
b) \(\frac{2}{100.99}-\frac{2}{99.98}-...-\frac{2}{3.2}-\frac{2}{2.1}\)
\(=\frac{2}{100.99}-\left(\frac{2}{99.98}+...+\frac{2}{3.2}+\frac{2}{2.1}\right)\)
đặt \(A=\frac{2}{99.98}+...+\frac{2}{3.2}+\frac{2}{2.1}\)
\(A=\frac{2}{1.2}+\frac{2}{2.3}+...+\frac{2}{98.99}\)
\(A=2.\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{98.99}\right)\)
\(A=2.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{98}-\frac{1}{99}\right)\)
\(A=2.\left(1-\frac{1}{99}\right)\)
\(A=2.\frac{98}{99}\)
\(A=\frac{196}{99}\)
Thay A vào, ta được :
\(\frac{2}{100.99}-\frac{196}{99}=\frac{-19598}{9900}\)
\(P=\frac{1}{2000.1999}+\frac{1}{1999.1998}+...+\frac{1}{3.2}+\frac{1}{2.1}\)
\(=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{1998.1999}+\frac{1}{1999.2000}\)
\(=\frac{1}{2}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{1998}-\frac{1}{1999}+\frac{1}{1999}-\frac{1}{2000}\)
\(=\frac{1}{2}-\frac{1}{2000}=\frac{999}{2000}\)
\(P=\frac{1}{2000.1999}+\frac{1}{1999.1998}+..+\frac{1}{3.2}+\frac{1}{2.1}\)
=\(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{1998.1999}+\frac{1}{1999.2000}\)
=\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+..+\frac{1}{1999}-\frac{1}{2000}\)
=\(1-\frac{1}{2000}\)
=\(\frac{1999}{2000}\)
Ta có
\(E=\frac{4^5.9^4-2.6^9}{2^{10}.3^8+6^8.20}\cdot\frac{5^4.20^4}{25^5.4^5}\)
\(=\frac{2^{10}.3^8-2^{10}.3^9}{2^{10}.3^8+2^{10}.3^8.5}\cdot\frac{2^8.5^8}{5^{10}.2^{10}}\)
\(=\frac{2^{10}.3^8.\left(1-3\right)}{2^{10}.3^8.\left(1+5\right)}\cdot\frac{1}{5^2.2^2}\)
\(=\frac{\left(-2\right)}{6}\cdot\frac{1}{100}=-\frac{1}{3}\cdot\frac{1}{100}=-\frac{1}{300}\)
Vậy : \(E=-\frac{1}{300}\)
Bài làm
\(E=\frac{4^5.9^4-2.6^9}{2^{10}.3^8+6^8.20}.\frac{5^4.20^4}{25^5.4^5}\)
\(\Rightarrow E=\frac{2^{10}.3^8-2.2^9.3^9}{2^{10}.3^8+2^8.3^8.2^2.5}.\frac{5^4.4^4.5^4}{5^{10}.4^5}\)
\(\Rightarrow E=\frac{2^{10}.3^8-2^{10}.3^9}{2^{10}.3^8+2^{10}.3^8.5}.\frac{5^8.4^4}{5^{10}.4^5}\)
\(\Rightarrow E=\frac{2^{10}\left(3^8-3^9\right)}{2^{10}\left(3^8+3^8.5\right)}.\frac{1}{5^2.4}\)
\(\Rightarrow E=\frac{3^8-3^9}{3^8\left(1+5\right)}.\frac{1}{100}\)
\(\Rightarrow E=\frac{3^8\left(1-3\right)}{3^8\left(1+5\right)}.\frac{1}{100}\)
\(\Rightarrow E=-\frac{2}{6}.\frac{1}{100}\)
\(\Rightarrow E=-\frac{1}{300}\)
\(=\frac{5.2^{30}.3^{18}-2^2.3^{20}.2^{27}}{5.2^9.2^{19}.3^{19}+7.2^{29}.3^{18}}\)
\(=\frac{5.2^{30}.3^{18}-2^{29}.3^{20}}{5.2^{28}.3^{19}+7.2^{29}.3^{18}}\)
\(=\frac{2^{29}.3^{18}\left(5.2-3^2\right)}{2^{28}.3^{18}\left(5.3+7.2\right)}\)
\(=\frac{2}{29}\)
\(2^{x+2}-3.2^x=16\)
=> \(2^x.2^2-3.2^x=16\)
=> \(2^x.\left(2^2-3\right)=16\)
=> \(2^x.1=2^4\)
=> x = 4
\(\left(\frac{1}{5}-\frac{3}{2}x\right)^2=\frac{9}{4}\)
=> \(\left(\frac{1}{5}-\frac{3}{2}x\right)^2=\left(\frac{3}{2}\right)^2\)
=> \(\orbr{\begin{cases}\frac{1}{5}-\frac{3}{2}x=\frac{3}{2}\\\frac{1}{5}-\frac{3}{2}x=-\frac{3}{2}\end{cases}}\)
=> \(\orbr{\begin{cases}\frac{3}{2}x=\frac{1}{5}-\frac{3}{2}\\\frac{3}{2}x=\frac{1}{5}+\frac{3}{2}\end{cases}}\)
=> \(\orbr{\begin{cases}\frac{3}{2}x=-\frac{13}{10}\\\frac{3}{2}x=\frac{17}{10}\end{cases}}\)
=> \(\orbr{\begin{cases}x=\frac{-13}{15}\\x=\frac{17}{15}\end{cases}}\)
C = 1/100 - ( 1/2.1 + 1/3.2 + ... + 1/98.97 + 1/99.98 + 1/100.99
C = 1/100 - ( 1- 1/2+ 1/2 - 1/3 + ... + 1/97 - 1/98 + 1/98 - 1/99 + 1/99 - 1/100 )
C = 1/100 - ( 1 - 1/100 )
C = 1/100 - 99/100
C = \(\frac{-49}{50}\)
\(a,\frac{-5}{9}.\left(\frac{3}{10}-\frac{2}{5}\right)\)
\(=\frac{-5}{9}.\frac{-1}{10}\)
\(=\frac{1}{18}\)
\(b,2^8:2^5+3^3.2-12\)
\(=2^3+9.2-12\)
\(=8+18-12\)
\(=26-12\)
\(=14\)
Câu c,d em chưa học nên không biết làm ạ, mong mọi người thông cảm!!!
Sửa lại câu b
\(=2^3+27.2-12\)
\(=8+54-12\)
\(=62-12\)
\(=50\)
\(\frac{2^3.2^5.4^2}{2^9}=\frac{2^8.2^4}{2^9}=\frac{2^{12}}{2^9}=2^3=8\)
~Hok tốt ~
Tham khảo:
\(\frac{2^3.2^5.4^2}{2^9}=\frac{2^8.2^4}{2^9}=\frac{2^{12}}{2^9}=2^3=8\)
Ok.