\(a.\frac{1}{99}-\frac{1}{99.98}-...-\frac{1}{3.2}-\frac{1}{2.1}\)

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 6 2017

a) \(\frac{1}{99}-\frac{1}{99.98}-...-\frac{1}{3.2}-\frac{1}{2.1}\)

\(=\frac{1}{99}-\left(\frac{1}{99.98}+...+\frac{1}{3.2}+\frac{1}{2.1}\right)\)

đặt \(A=\frac{1}{99.98}+...+\frac{1}{3.2}+\frac{1}{2.1}\)

\(A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{98.99}\)

\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{98}-\frac{1}{99}\)

\(A=1-\frac{1}{99}\)

\(A=\frac{98}{99}\)

thay A vào, ta được :

\(\frac{1}{99}-\frac{98}{99}=\frac{-97}{99}\)

b) \(\frac{2}{100.99}-\frac{2}{99.98}-...-\frac{2}{3.2}-\frac{2}{2.1}\)

\(=\frac{2}{100.99}-\left(\frac{2}{99.98}+...+\frac{2}{3.2}+\frac{2}{2.1}\right)\)

đặt \(A=\frac{2}{99.98}+...+\frac{2}{3.2}+\frac{2}{2.1}\)

\(A=\frac{2}{1.2}+\frac{2}{2.3}+...+\frac{2}{98.99}\)

\(A=2.\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{98.99}\right)\)

\(A=2.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{98}-\frac{1}{99}\right)\)

\(A=2.\left(1-\frac{1}{99}\right)\)

\(A=2.\frac{98}{99}\)

\(A=\frac{196}{99}\)

Thay A vào, ta được :

\(\frac{2}{100.99}-\frac{196}{99}=\frac{-19598}{9900}\)

21 tháng 6 2017

bài này dễ mak bn !tự lm đê!

21 tháng 6 2017

 1/100‐1/100.99‐1/99.98‐...‐1/3.2‐1/2.1

\(\frac{1}{100}-\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{98.99}+\frac{1}{99.100}\right)\)

\(\frac{1}{100}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+..+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\right)\)

\(\frac{1}{100}-\left(1-\frac{1}{100}\right)=\frac{1}{100}-\frac{99}{100}=-\frac{98}{100}=-\frac{49}{50}\)

25 tháng 6 2016

Ta có: \(C=\frac{1}{100}-\frac{1}{100.99}-\frac{1}{99.98}-...-\frac{1}{3.2}-\frac{1}{2.1}\)

\(\Rightarrow C=\frac{1}{100}-\left(\frac{1}{99}-\frac{1}{100}\right)-\left(\frac{1}{98}-\frac{1}{99}\right)-...-\left(\frac{1}{2}-\frac{1}{3}\right)-\left(1-\frac{1}{2}\right)\)

\(\Rightarrow C=\frac{1}{100}-\frac{1}{99}+\frac{1}{100}-\frac{1}{98}+\frac{1}{99}-...-\frac{1}{2}+\frac{1}{3}-1+\frac{1}{2}\)

\(\Rightarrow C=\frac{1}{100}+\frac{1}{100}-1\)

\(\Rightarrow C=\frac{2}{100}-\frac{100}{100}\)

\(\Rightarrow C=-\frac{88}{100}=-\frac{22}{25}\)

Vậy \(C=-\frac{22}{25}\)

Chuk bạn hok tốt! vui

7 tháng 5 2019

bạn oi

2/100 -100/100=98/100 chứ

sao bằng 88 được bạn ơi

13 tháng 7 2016

\(C=\frac{1}{100}-\frac{1}{100.99}-\frac{1}{99.98}-\frac{1}{98.97}-...-\frac{1}{3.2}-\frac{1}{2.1}\)

\(C=\frac{1}{100}-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{98.99}+\frac{1}{99.100}\right)\)

\(C=\frac{1}{100}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\right)\)

\(C=\frac{1}{100}-\left(1-\frac{1}{100}\right)\)

\(C=\frac{1}{100}-1+\frac{1}{100}\)

\(C=\frac{-49}{50}\)

13 tháng 7 2016

C = 1/100 - 1/100.99 - 1/99.98 - 1/98.97 - ... - 1/3.2 - 1/2.1

C = 1/100 - (1/100.99 + 1/99.98 + 1/98.97 + ... + 1/3.2 + 1/2.1)

C = 1/100 - (1/1.2 + 1/2.3 + ... + 1/98.99 + 1/99.100)

C = 1/100 - (1 - 1/2 + 1/2 - 1/3 + ... + 1/98 - 1/99 + 1/99 - 1/100)

C = 1/100 - (1 - 1/100)

C = 1/100 - 99/100

C = -98/100 = -49/50

8 tháng 9 2016

Ta có:\(\frac{1}{100.99}-\frac{1}{99.98}-\frac{1}{98.97}-...-\frac{1}{3.2}-\frac{1}{2.1}\)

\(=\frac{1}{9900}-\left(\frac{1}{99.98}+\frac{1}{98.97}+\frac{1}{97.96}+....+\frac{1}{3.2}+\frac{1}{2.1}\right)\)

\(=\frac{1}{9900}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{97}-\frac{1}{98}+\frac{1}{98}-\frac{1}{99}\right)\)

\(=\frac{1}{9900}-\left(1-\frac{1}{99}\right)\)

\(=\frac{1}{9900}-\frac{98}{99}=-\frac{9799}{9900}\)

30 tháng 12 2017

\(\frac{1}{100.99}-\frac{1}{99.98}-\frac{1}{98.97}-...-\frac{1}{3.2}-\frac{1}{2.1}\)

\(=\frac{1}{100.99}-\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{97.98}+\frac{1}{98.99}\right)\)

\(=\frac{1}{9900}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{97}-\frac{1}{98}+\frac{1}{98}-\frac{1}{99}\right)\)

\(=\frac{1}{9900}-\left(1-\frac{1}{99}\right)\)

\(=\frac{1}{9900}-\frac{98}{99}=-\frac{9799}{9900}\)

29 tháng 6 2016

1) Tính:

\(\frac{1}{100.99}-\frac{1}{99.98}-\frac{1}{98.97}-....-\frac{1}{3.2}\)\(-\frac{1}{2.1}\)

\(=\frac{1}{100}-\frac{1}{99}-\frac{1}{99}-\frac{1}{98}-\frac{1}{98}-\frac{1}{97}-\)\(...-\frac{1}{3}-\frac{1}{2}-\frac{1}{2}-\frac{1}{1}\)

\(=\frac{1}{100}-\frac{1}{1}\)

\(=-\frac{99}{100}\)

19 tháng 9 2015

= (1/99-1/100)- (1/98-1/99)-...(1/1-1/2)

= -(1/1-1/2+1/3-1/4+...+1/99-1/100)

=-(1/1-1/100)

=-99/100

trong câu hỏi tương tự rõ hơn

23 tháng 8 2015

Ta có:

\(A=\frac{1}{100}-\frac{1}{100.99}-\frac{1}{99.98}-\frac{1}{98.97}-...-\frac{1}{3.2}-\frac{1}{2.1}\)

\(=\frac{1}{100}-\left(\frac{1}{99}-\frac{1}{100}\right)-\left(\frac{1}{98}-\frac{1}{99}\right)-\left(\frac{1}{97}-\frac{1}{98}\right)-...-\left(\frac{1}{2}-\frac{1}{3}\right)-\left(1-\frac{1}{2}\right)\)

\(=\frac{1}{100}-\frac{1}{99}+\frac{1}{100}-\frac{1}{98}+\frac{1}{99}-\frac{1}{97}+\frac{1}{98}...-\frac{1}{2}+\frac{1}{3}-1+\frac{1}{2}\)

\(=\frac{1}{100}+\frac{1}{100}-1\)

\(=\frac{1}{50}-\frac{50}{50}\)

\(=-\frac{49}{50}\)

Câu này khó quá ta mình suy nghĩ này giờ mà vẫn chưa ra

20 tháng 10 2015

\(C=\frac{1}{100} -\left(\frac{1}{100.99}+\frac{1}{99.98}+...+\frac{1}{2.1}\right)=\frac{1}{100}-\left(1-\frac{1}{100}\right)=\frac{1}{100}-\frac{99}{100}=-\frac{49}{50}\)

20 tháng 10 2015

chắc là 200,đoán thế thôi,chưa tính