K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 10 2018

3A=3+32+33+...+32019

-A=1+3+32+...+3018

2A=32019-1<B=32019

=>A<B

4 tháng 10 2018

Ta có A=1+3+3^2+...+3^2018

3A=3+3^2+3^3+...+3^2019

3A-A=3^2019-1

A=(3^2019-1):2

=>A<B

A=1+3+32+33+.....+32021
-->3A=3(1+3+32+33+.....+32021)
-->3A=3+32+33+...+32022
-->3A-A=(3+32+33+....32022)-(1+3+32+33+.....+32021)
-->2A=32022-1
-->A=(32022-1):2
Vì (32022-1):2>(32022-1):2
-->A=B
 

AH
Akai Haruma
Giáo viên
22 tháng 5 2023

Lời giải:
$A=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2022}}$

$3A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2021}}$

$\Rightarrow 3A-A=1-\frac{1}{3^{2022}}$

$\Rightarrow A=\frac{1}{2}-\frac{1}{2.3^{2022}}$

Xét hiệu:
$A-B=\frac{1}{2}-\frac{1}{2.3^{2022}}-(1-\frac{1}{3^{2021}})$

$=\frac{1}{3^{2021}}-\frac{1}{2.3^{2022}}-\frac{1}{2}$

$=\frac{5}{2.3^{2022}}-\frac{1}{2}$

$< \frac{1}{2}-\frac{1}{2}=0$

$\Rightarrow A< B$

22 tháng 5 2023

`A = 1/3 +1/3^2 +1/3^3 +...+1/3^2022`

`<=> 3A = 1 +1/3 +1/3^2 +...+ 1/3^2021`

`=>2A =3A-A =1+1/3 +1/3^2 +..+ 1/3^2021 - 1/3-1/3^2-1/3^3..-1/3^2022`

`2A = 1-1/3^2022`

`=> A = (1-1/3^2022) :2`

Ta thấy `1- 1/3^2022 < 1-1/3^2021`

`=> (1 -1/3^2022):2<1-1/3^2021`

Hay `A<B`

28 tháng 6 2021

Ta có `3A=1+1/3+....+1/3^99`

`=>3A-A=1-1/3^100`

`=>2A=1-1/3^100`

`=>A=1/2-1/(2.3^100)<1/2`

Hay `A<B`

2 tháng 1 2022

\(A=1+3+3^2+...+3^{2001}\)

\(\Rightarrow3A=3+3^2+3^3+...+3^{2002}\)

\(\Rightarrow3A-A=3+3^2+3^3+...+3^{2002}-1-3^2-3^3-...-3^{2001}\)

\(\Rightarrow2A=3^{2002}-1\)

\(\Rightarrow A=\dfrac{3^{2002}-1}{2}\)

Vì \(\dfrac{3^{2002}-1}{2}< 3^{2002}-1\Rightarrow A< B\)

18 tháng 3 2018

sai

ta thấy tên tử và dưới mẫu = nhau

=>A=B=1

18 tháng 3 2018

không phải đâu Hoàng Phú Huy, nhìn kĩ lại đi

NM
9 tháng 2 2021

ta có 

\(a=1+3^2+3^4+..+3^{2008}\)

\(\Rightarrow9a=3^2+3^4+..+3^{2010}\) lấy hiệu hai phương trình ta có

\(8a=3^{2010}-1\Rightarrow a=\frac{3^{2010}-1}{8}=b\)

8 tháng 7 2023

\(A=\dfrac{1}{3^1}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{2023}}\)

\(A=\dfrac{1}{3}.\left(1+\dfrac{1}{3^1}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{2022}}\right)\)

\(\Rightarrow3A=3.\dfrac{1}{3}.\left(1+\dfrac{1}{3^1}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{2022}}\right)\)

\(\Rightarrow3A=1+\dfrac{1}{3^1}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{2022}}\)

\(\Rightarrow3A-A=1+\dfrac{1}{3^1}+\dfrac{1}{3^2}+...\dfrac{1}{3^{2022}}-\left(\dfrac{1}{3^1}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{2023}}\right)\)

\(\Rightarrow2A=1+\dfrac{1}{3^1}+\dfrac{1}{3^2}+...\dfrac{1}{3^{2022}}-\dfrac{1}{3^1}-\dfrac{1}{3^2}-\dfrac{1}{3^3}-...\dfrac{1}{3^{2022}}-\dfrac{1}{3^{2023}}\)

\(\Rightarrow2A=1-\dfrac{1}{3^{2023}}\)

\(\Rightarrow A=\dfrac{1}{2}\left(1-\dfrac{1}{3^{2023}}\right)\)

\(\Rightarrow A=\dfrac{1}{2}-\dfrac{1}{2}.\dfrac{1}{3^{2023}}< \dfrac{1}{2}\)

\(B=\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{12}=\dfrac{4+3+1}{12}=\dfrac{8}{12}=\dfrac{2}{3}\)

mà \(\dfrac{2}{3}>\dfrac{1}{2}\) \(\left(\dfrac{2}{3}=\dfrac{4}{6}>\dfrac{1}{2}=\dfrac{3}{6}\right)\)

\(\Rightarrow A< B\)

 

 

8 tháng 7 2023

       A =      \(\dfrac{1}{3}\)\(\dfrac{1}{3^2}\)\(\dfrac{1}{3^3}\)+............+\(\dfrac{1}{3^{2023}}\)

     3A = 1+ \(\dfrac{1}{3}\) + \(\dfrac{1}{3^2}\) + \(\dfrac{1}{3^3}\)+...+\(\dfrac{1}{3^{2022}}\)

3A - A =  1 - \(\dfrac{1}{3^{2023}}\)

   2A   = 1 - \(\dfrac{1}{3^{2023}}\) < 1

      B =  \(\dfrac{1}{3}\) + \(\dfrac{1}{4}\)\(\dfrac{1}{12}\)

      B  = \(\dfrac{4}{12}\) + \(\dfrac{3}{12}\) + \(\dfrac{1}{12}\)

     B   = \(\dfrac{8}{12}\)

     B   = \(\dfrac{2}{3}\) ⇒ 2B = \(\dfrac{4}{3}\) > 1 

2A < 2B ⇒ A < B