Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/
\(\overline{2021ab}=202100+\overline{ab}=6519.31+11+\overline{ab}⋮31\)
\(6519.31⋮31\Rightarrow11+\overline{ab}⋮31\)
=> \(\overline{ab}=20\) hoặc \(\overline{ab}=51\) hoặc \(\overline{ab}=82\)
b/ 536 chia b dư 11; 2713 chia b dư 13 nên b>13
\(536-11=525⋮b\Rightarrow5.525=2625⋮b\)
\(2713-13=2700⋮b\)
\(\Rightarrow2700-2625=75⋮b\)
=> b=5 hoặc b=25 hoặc b=75. Do b>13 => b=25 hoặc b=75
a) Gọi số tự nhiên nhỏ nhất cần tìm là a
Theo đề bài ta có: a=11x+6=4y+1=19z+11 (\(x;y;z\in N\))
=> a+27=11x+33=4y+28=19z+38 => a+27=11(x+3)=4(x+28)=19(z+2)
=>a+27 chia hết cho 11;4;19
Mà a nhỏ nhất => a+27 nhỏ nhất => a+27 = BCNN(11;4;19) => a+27=836 => a=809
Vậy số cần tìm là 809
a) Gọi số cần tìm là a \(\left(a\ne1;a>1\right)\)
Theo đề bài ta có: a chia cho 2;3;4;5;6 (dư 1)
=> a - 1 chia hết cho 2;3;4;5;6
Mà a nhỏ nhất => \(a-1\in BCNN\left(2;3;4;5;6\right)=60\)
=> a = 60 + 1 = 61
(Xem lại đề, vì chỗ chia hết cho 7??)
b) Để \(\overline{71x1y}⋮45\Leftrightarrow\) \(\overline{71x1y}⋮9\) và \(5\)
Để \(\overline{71x1y}⋮5\) <=> Có tận cùng là 0 và 5
<=> y = {0;5}
Để \(\overline{71x1y}⋮9\) <=> Tổng các chữ số phải chia hết cho 9
Tức là: 9 + 1 + x + 1 + y phải chia hết cho 9
Nếu y = 0 \(\Rightarrow7+1+x+1+0\) phải chia hết cho 9
=> x = {0;8}
Nếu y = 5 \(\Rightarrow7+1+x+1+5\) phải chia hết cho 9
=> x = 4
Vậy x = {0;8;4} và y = {0;5}
a) Gọi số cần tìm là a
ta có a chia 2,3,4,5,6 đều dư 1 ⇒ a-1 chia hết cho 2,3,4,5,6
⇔a-1 là bội chung của 2,3,4,5,6
a-1= { 60;120;180;240;300;360;420;480;540;600;....}
Mặt khác ta có a chia hết cho 7 và phải là số nhỏ nhất
nếu a-1= 300 thì a=301 là số nhỏ nhât thoa mãn yêu cầu của bài toán
b)Để 71x1y chia hết cho 45 thì 71x1y phải chia hết cho 9 và 5
Để 71x1y chia hết cho 5 thì y bằng 0 hoặc 5
TH1:Nếu y bằng 0 thì:(7 + 1 + x + 1 + 0)chia hết cho 9
( 9 + x ) chia hết cho 9
Vậy nếu y bằng 0 thì x bằng 0 hoặc 9
TH2:Nếu y bằng 5 thì:(7 + 1 + x + 1 + 5) chia hết cho 9
( 14 + x ) chia hết cho 9
Vậy nếu y bằng 5 thì x bằng 4
Bài 1 : Giải :
Vì : a chia cho 3 dư 1 => a + 2 \(⋮\)3
a chia cho 4 dư 2 => a + 2 \(⋮\)4
a chia cho 5 dư 3 => a + 2 \(⋮\)5
a chia cho 6 dư 4 => a + 2 \(⋮\)6
=> a + 2 \(\in\) BC( 3,4,5,6 )
3 = 3
4 = 22
5 = 5
6 = 2 .3
BCNN( 3,4,5,6 ) = 22 . 3 . 5 = 60
BC( 3,4,5,6 ) = { 0;60;120;180;... }
Mà : a nhỏ nhất => a + 2 nhỏ nhất
=> a + 2 = 60
=> a = 60 - 2 = 58
Vậy số tự nhiên cần tìm là 58
Bài 2 : Giải :
\(A=\frac{1.5.6+2.10.12+4.20.24+9.45.54}{1.3.5+2.6.10+4.12.20+9.27.45}\)
\(A=\frac{1.1.5.1.6.1.+1.2.5.2.6.2+1.4.5.4.6.4+1.9.5.9.6.9}{1.1.3.1.5.1+1.2.3.2.5.2+1.4.3.4.5.4+1.9.3.9.5.9}\)
\(A=\frac{1.5.6\left(1+2.2.2+4.4.4+9.9.9\right)}{1.3.5\left(1+2.2.2+4.4.4+9.9.9\right)}\)
\(A=\frac{1.5.6}{1.3.5}=\frac{6}{3}=2\)
Vậy : A = 2
Bài 3: Giải :
Quy đồng tử số , ta có :
\(\frac{6}{7}=\frac{6.3}{7.3}=\frac{18}{21};\frac{9}{11}=\frac{9.2}{11.2}=\frac{18}{22};\frac{2}{3}=\frac{2.9}{3.9}=\frac{18}{27}\)
=> \(\frac{18}{21}\) số thứ nhất = \(\frac{18}{22}\) số thứ hai và = \(\frac{18}{27}\) số thứ ba .
Hay : \(\frac{1}{21}\) số thứ nhất = \(\frac{1}{22}\) số thứ hai và = \(\frac{1}{27}\) số thứ ba .
Vậy coi số thứ nhất là 21 phần bằng nhau , số thứ hai là 22 phần bằng nhau thì số thứ ba là 27 phần bằng nhau như thế .
Tổng số phần bằng nhau là :
21 + 22 + 27 = 70
Số thứ nhất là :
210 : 70 . 21 = 63
Số thứ hai là :
210 : 70 . 22 = 66
Số thứ ba là :
210 - 63 - 66 = 81
Đáp số : ...
Do A = x183y chia cho 2 và 5 đều dư 1 nên y = 1. Ta có A = x183y
Vì A = x183y chia cho 9 dư 1
→ x183y - 1 chia hết cho 9
→ x183y chia hết cho 9
↔ x + 1 + 8 + 3 + 0 chia hết cho 9 ↔ x + 3 chia hết cho 9, mà x là chữ số nên x = 6
Vậy x = 6; y = 1
a)
= 48 + 288 : ( x - 3 )2 = 50
288 : ( x - 3 )2 = 50 - 48
288: ( x - 3 )2= 2
(x - 3 )2= 288 : 2
(x - 3)2= 144
(x - 3)2 = 122
x - 3 = 12
x = 12 + 3 = 15
gọi số đó là a suy ra a-3 chia hết cho 5 và a-4 chia hết cho 7
Từ a-3 chia hết cho 5 suy ra a-18 chia hết cho 5
từ a-4 chia hết cho 7 suy ra a-18 chia hết cho 7
suy ra a-18 thuộc BC(5;7).Mà a nhỏ nhất suy ra a-18 nhỏ nhất suy ra a-18 là BCNN
suy ra a-18=0 suy ra a=18
a) Ta có \(\overline{2021ab}⋮31\Leftrightarrow202100+\overline{ab}⋮31\Leftrightarrow11+\overline{ab}⋮31\Leftrightarrow\overline{ab}\in\left\{20;51;82\right\}\).
Vậy..
giúp mk câu b nữa đc không?