Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
quá dễ dàng
1.
\(A=\frac{1}{199}+\frac{2}{198}+...+\frac{199}{1}\)
cộng 1 vào mỗi phân số trong 198 phân số đầu, trừ phân số cuối đi 198 ta được :
\(A=\left(\frac{1}{199}+1\right)+\left(\frac{2}{198}+1\right)+...+\left(\frac{199}{1}-198\right)\)
\(A=\frac{200}{199}+\frac{200}{198}+...+1\)
\(A=\frac{200}{199}+\frac{200}{198}+...+\frac{200}{200}\)
đưa phân số cuối lên đầu ta được :
\(A=\frac{200}{200}+\frac{200}{199}+\frac{200}{198}+...+\frac{200}{2}\)
\(A=200.\left(\frac{1}{200}+\frac{1}{199}+\frac{1}{198}+...+\frac{1}{2}\right)\)
\(\Rightarrow\frac{A}{B}=\frac{200.\left(\frac{1}{200}+\frac{1}{199}+\frac{1}{198}+...+\frac{1}{2}\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{200}}=200\)
2.
\(A=\frac{1}{1.400}+\frac{1}{2.401}+\frac{1}{3.402}+...+\frac{1}{101.500}\)
\(A=\frac{1}{400}.\left(1-\frac{1}{400}\right)+\frac{1}{400}.\left(\frac{1}{2}-\frac{1}{401}\right)+\frac{1}{400}.\left(\frac{1}{3}-\frac{1}{402}\right)+...+\frac{1}{400}.\left(\frac{1}{101}-\frac{1}{500}\right)\)
\(A=\frac{1}{400}.\left(1-\frac{1}{400}+\frac{1}{2}-\frac{1}{401}+\frac{1}{3}-\frac{1}{402}+...+\frac{1}{101}-\frac{1}{500}\right)\)
\(A=\frac{1}{400}.\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{101}-\frac{1}{400}-\frac{1}{401}-\frac{1}{402}-...-\frac{1}{500}\right)\)
\(B=\frac{1}{1.102}+\frac{1}{2.103}+\frac{1}{3.104}+...+\frac{1}{399.500}\)
\(B=\frac{1}{101}.\left(1-\frac{1}{102}\right)+\frac{1}{101}.\left(\frac{1}{2}-\frac{1}{103}\right)+\frac{1}{101}.\left(\frac{1}{3}-\frac{1}{104}\right)+...+\frac{1}{101}.\left(\frac{1}{399}-\frac{1}{500}\right)\)
\(B=\frac{1}{101}.\left(1-\frac{1}{102}+\frac{1}{2}-\frac{1}{103}+\frac{1}{3}-\frac{1}{104}+...+\frac{1}{399}-\frac{1}{500}\right)\)
\(B=\frac{1}{101}.\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{399}-\frac{1}{102}-\frac{1}{103}-\frac{1}{104}-...-\frac{1}{500}\right)\)
\(B=\frac{1}{101}.\left(1+\frac{1}{2}+...+\frac{1}{101}+\frac{1}{102}+...+\frac{1}{399}-\frac{1}{102}-...-\frac{1}{399}-\frac{1}{400}-...-\frac{1}{500}\right)\)
\(B=\frac{1}{101}.\left(1+\frac{1}{2}+...+\frac{1}{101}-\frac{1}{400}-...-\frac{1}{500}\right)\)
Ta thấy vế trong ngoặc của hai biểu thức A và B giống nhau, do đó :
\(\frac{A}{B}=\frac{\left(\frac{1}{400}\right)}{\left(\frac{1}{101}\right)}=\frac{101}{400}\)
\(A=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{200}\)
Ta có: \(B=\frac{1}{199}+\frac{2}{198}+...+\frac{199}{1}\)
\(=\frac{200-199}{199}+\frac{200-198}{198}+...+\frac{200-1}{1}\)
\(=\frac{200}{199}-\frac{199}{199}+\frac{200}{198}-\frac{198}{198}+...+\frac{200}{1}-\frac{1}{1}\)
\(=\left(\frac{200}{199}+\frac{200}{198}+...+\frac{200}{1}\right)-\left(\frac{199}{199}+\frac{198}{198}+...+\frac{1}{1}\right)\)
\(=200+200\left(\frac{1}{199}+\frac{1}{198}+...+\frac{1}{2}\right)-199\)
\(=200\left(\frac{1}{199}+\frac{1}{198}+...+\frac{1}{2}\right)+\frac{200}{200}\)
\(=200\left(\frac{1}{200}+\frac{1}{199}+\frac{1}{198}+...+\frac{1}{2}\right)\)
\(\Rightarrow\frac{A}{B}=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{200}}{200\left(\frac{1}{200}+\frac{1}{199}+\frac{1}{198}+...+\frac{1}{2}\right)}=\frac{1}{200}\)
Ta có :
\(B=\frac{1}{199}+\frac{2}{198}+....+\frac{198}{2}+\frac{199}{1}\)
\(B=1+\frac{1}{199}+1+\frac{1}{198}+....+1+\frac{198}{2}\)
\(B=\frac{200}{199}+\frac{200}{198}+...+\frac{200}{2}\)
\(B=200\left(\frac{1}{199}+\frac{1}{198}+...+\frac{1}{2}\right)\)
\(\Rightarrow\frac{A}{B}=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{200}}{200\left(\frac{1}{199}+\frac{1}{198}+...+\frac{1}{2}\right)}=\frac{1}{200}\)
Vậy \(\frac{A}{B}=\frac{1}{200}\)
A=\(\frac{1}{7}+\frac{1}{7^2}+\frac{1}{7^3}+...+\frac{1}{7^{100}}\)
\(\Rightarrow7A=(1+\frac{1}{7}+\frac{1}{7^2}+\frac{1}{7^3}+...+\frac{1}{7^{99}})-\left(\frac{1}{7}+\frac{1}{7^2}+\frac{1}{7^3}+....+\frac{1}{7^{100}}\right)\)
\(\Rightarrow6A=\left(1-\frac{1}{7^{99}}\right)\)
\(\Rightarrow A=\left(1-\frac{1}{7^{99}}\right):6\)
Câu b tương tự nha
a) \(A=\frac{1}{7}+\frac{1}{7^2}+\frac{1}{7^3}+...........+\frac{1}{7^{100}}\)
\(\Rightarrow7A=1+\frac{1}{7}+\frac{1}{7^2}+.........+\frac{1}{7^{99}}\)
\(\Rightarrow7A-A=6A=1-\frac{1}{7^{100}}\)
\(\Rightarrow A=\frac{1-\frac{1}{7^{100}}}{6}\)
i don't now
mong thông cảm !
...........................
Đăt A = \(\frac{1}{7}+\frac{1}{7^2}+\frac{1}{7^3}+......+\frac{1}{7^{100}}\)
\(\Rightarrow7A=1+\frac{1}{7}+\frac{1}{7^2}+.....+\frac{1}{7^{100}}\)
\(\Rightarrow7A-A=1-\frac{1}{7^{100}}\)
\(\Rightarrow6A=1-\frac{1}{7^{100}}\)
\(\Rightarrow A=\frac{1-\frac{1}{7^{100}}}{6}\)
\(B=\frac{1}{199}+\frac{2}{198}+\frac{3}{197}+...+\frac{198}{2}+\frac{199}{1}\)
\(=\left(\frac{1}{199}+1\right)+\left(\frac{2}{198}+1\right)+\left(\frac{3}{197}+1\right)+...+\left(199-1-1-1-...1\right)\)(198 chữ số 1)
\(=\frac{200}{199}+\frac{200}{198}+\frac{200}{197}+...+1=200.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{197}+\frac{1}{198}+\frac{1}{199}+\frac{1}{200}\right)=200.A\)
\(\Rightarrow\frac{A}{B}=\frac{A}{200.A}=\frac{1}{200}\)
A = 1 - \(\frac{1}{200}\) = \(\frac{199}{200}\)
199/200