Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
S= 1/199 + 2/198 + ... + 198/2 + 199/1
S= (1/199 + 1) + (2/198 + 1)+ ... + (198/2 + 1) +1
S= 200/200 + 200/199 + 200/198 + ... + 200/2
S= 200.(1/200 + 1/199 + ... + 1/2)
Suy ra , B=(1/2 + 1/3 + ... +1/200) : 200.(1/2 + 1/3 + ... + 1/200)
B=1 : 200 = 1/200
a) 299A = \(1-\frac{1}{400}\) A= \(\frac{399}{400}\) :299
101B = \(1-\frac{1}{400}\) B = \(\frac{399}{400}\):101
\(\frac{A}{B}=\frac{299}{101}\)
Làm tắt ý a, mấy ý kia biết làm nhưng dài lắm
Ta có: \(B=\frac{1}{199}+\frac{2}{198}+...+\frac{199}{1}\)
\(=\frac{200-199}{199}+\frac{200-198}{198}+...+\frac{200-1}{1}\)
\(=\frac{200}{199}-\frac{199}{199}+\frac{200}{198}-\frac{198}{198}+...+\frac{200}{1}-\frac{1}{1}\)
\(=\left(\frac{200}{199}+\frac{200}{198}+...+\frac{200}{1}\right)-\left(\frac{199}{199}+\frac{198}{198}+...+\frac{1}{1}\right)\)
\(=200+200\left(\frac{1}{199}+\frac{1}{198}+...+\frac{1}{2}\right)-199\)
\(=200\left(\frac{1}{199}+\frac{1}{198}+...+\frac{1}{2}\right)+\frac{200}{200}\)
\(=200\left(\frac{1}{200}+\frac{1}{199}+\frac{1}{198}+...+\frac{1}{2}\right)\)
\(\Rightarrow\frac{A}{B}=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{200}}{200\left(\frac{1}{200}+\frac{1}{199}+\frac{1}{198}+...+\frac{1}{2}\right)}=\frac{1}{200}\)
Ta có :
\(B=\frac{1}{199}+\frac{2}{198}+....+\frac{198}{2}+\frac{199}{1}\)
\(B=1+\frac{1}{199}+1+\frac{1}{198}+....+1+\frac{198}{2}\)
\(B=\frac{200}{199}+\frac{200}{198}+...+\frac{200}{2}\)
\(B=200\left(\frac{1}{199}+\frac{1}{198}+...+\frac{1}{2}\right)\)
\(\Rightarrow\frac{A}{B}=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{200}}{200\left(\frac{1}{199}+\frac{1}{198}+...+\frac{1}{2}\right)}=\frac{1}{200}\)
Vậy \(\frac{A}{B}=\frac{1}{200}\)
Ta có :
\(A=\dfrac{1}{1.300}+\dfrac{1}{2.301}+\dfrac{1}{3.302}+..................+\dfrac{1}{101.400}\)
\(299A=\dfrac{299}{1.300}+\dfrac{299}{2.301}+\dfrac{299}{3.302}+..................+\dfrac{299}{101.400}\)
\(299A=1-\dfrac{1}{300}+\dfrac{1}{2}-\dfrac{1}{301}+.................+\dfrac{1}{101}-\dfrac{1}{400}\)
\(299A=\left(1+\dfrac{1}{2}+.................+\dfrac{1}{101}\right)-\left(\dfrac{1}{300}+\dfrac{1}{301}+.............+\dfrac{1}{400}\right)=C\)
\(\Rightarrow A=\dfrac{C}{299}\)
Lại có :
\(B=\dfrac{1}{1.102}+\dfrac{1}{2.103}+................+\dfrac{1}{299.400}\)
\(101B=\dfrac{101}{1.102}+\dfrac{101}{2.103}+...............+\dfrac{101}{299.400}\)
\(101B=1-\dfrac{1}{102}+\dfrac{1}{2}-\dfrac{1}{103}+...............+\dfrac{1}{299}-\dfrac{1}{400}\)
\(101B=\left(1+\dfrac{1}{2}+...............+\dfrac{1}{299}\right)-\left(\dfrac{1}{102}+\dfrac{1}{103}+...............+\dfrac{1}{400}\right)=C\)\(\Rightarrow B=\dfrac{C}{101}\)
\(\Rightarrow\dfrac{A}{B}=\dfrac{C}{101}:\dfrac{C}{299}=\dfrac{299}{101}\)
~ Chúc bn học tốt ~
Ta có :
\(B=\frac{1}{199}+\frac{2}{198}+...+\frac{198}{2}+\frac{199}{1}\)
\(B=\frac{1}{199}+\frac{2}{198}+...+\frac{198}{2}+199\)
\(B=\left(\frac{1}{199}+1\right)+\left(\frac{2}{198}+1\right)+...+\left(\frac{198}{2}+1\right)+1\)
\(B=\frac{200}{199}+\frac{200}{198}+...+\frac{200}{2}+1\)
\(B=\frac{200}{200}+\frac{200}{199}+\frac{200}{198}+...+\frac{200}{2}\)
\(B=200.\left(\frac{1}{2}+...+\frac{1}{198}+\frac{1}{199}+\frac{1}{200}\right)\)
\(\Rightarrow\frac{A}{B}=\frac{\frac{1}{2}+...+\frac{1}{198}+\frac{1}{199}+\frac{1}{200}}{200.\left(\frac{1}{2}+...+\frac{1}{198}+\frac{1}{199}+\frac{1}{200}\right)}=\frac{1}{200}\)
Ủng hộ mk nha !!! ^_^
\(B=\frac{1}{199}+\frac{2}{198}+\frac{3}{197}+...+\frac{198}{2}+\frac{199}{1}\)
\(=\left(\frac{1}{199}+1\right)+\left(\frac{2}{198}+1\right)+\left(\frac{3}{197}+1\right)+...+\left(199-1-1-1-...1\right)\)(198 chữ số 1)
\(=\frac{200}{199}+\frac{200}{198}+\frac{200}{197}+...+1=200.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{197}+\frac{1}{198}+\frac{1}{199}+\frac{1}{200}\right)=200.A\)
\(\Rightarrow\frac{A}{B}=\frac{A}{200.A}=\frac{1}{200}\)
quá dễ dàng
1.
\(A=\frac{1}{199}+\frac{2}{198}+...+\frac{199}{1}\)
cộng 1 vào mỗi phân số trong 198 phân số đầu, trừ phân số cuối đi 198 ta được :
\(A=\left(\frac{1}{199}+1\right)+\left(\frac{2}{198}+1\right)+...+\left(\frac{199}{1}-198\right)\)
\(A=\frac{200}{199}+\frac{200}{198}+...+1\)
\(A=\frac{200}{199}+\frac{200}{198}+...+\frac{200}{200}\)
đưa phân số cuối lên đầu ta được :
\(A=\frac{200}{200}+\frac{200}{199}+\frac{200}{198}+...+\frac{200}{2}\)
\(A=200.\left(\frac{1}{200}+\frac{1}{199}+\frac{1}{198}+...+\frac{1}{2}\right)\)
\(\Rightarrow\frac{A}{B}=\frac{200.\left(\frac{1}{200}+\frac{1}{199}+\frac{1}{198}+...+\frac{1}{2}\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{200}}=200\)
2.
\(A=\frac{1}{1.400}+\frac{1}{2.401}+\frac{1}{3.402}+...+\frac{1}{101.500}\)
\(A=\frac{1}{400}.\left(1-\frac{1}{400}\right)+\frac{1}{400}.\left(\frac{1}{2}-\frac{1}{401}\right)+\frac{1}{400}.\left(\frac{1}{3}-\frac{1}{402}\right)+...+\frac{1}{400}.\left(\frac{1}{101}-\frac{1}{500}\right)\)
\(A=\frac{1}{400}.\left(1-\frac{1}{400}+\frac{1}{2}-\frac{1}{401}+\frac{1}{3}-\frac{1}{402}+...+\frac{1}{101}-\frac{1}{500}\right)\)
\(A=\frac{1}{400}.\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{101}-\frac{1}{400}-\frac{1}{401}-\frac{1}{402}-...-\frac{1}{500}\right)\)
\(B=\frac{1}{1.102}+\frac{1}{2.103}+\frac{1}{3.104}+...+\frac{1}{399.500}\)
\(B=\frac{1}{101}.\left(1-\frac{1}{102}\right)+\frac{1}{101}.\left(\frac{1}{2}-\frac{1}{103}\right)+\frac{1}{101}.\left(\frac{1}{3}-\frac{1}{104}\right)+...+\frac{1}{101}.\left(\frac{1}{399}-\frac{1}{500}\right)\)
\(B=\frac{1}{101}.\left(1-\frac{1}{102}+\frac{1}{2}-\frac{1}{103}+\frac{1}{3}-\frac{1}{104}+...+\frac{1}{399}-\frac{1}{500}\right)\)
\(B=\frac{1}{101}.\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{399}-\frac{1}{102}-\frac{1}{103}-\frac{1}{104}-...-\frac{1}{500}\right)\)
\(B=\frac{1}{101}.\left(1+\frac{1}{2}+...+\frac{1}{101}+\frac{1}{102}+...+\frac{1}{399}-\frac{1}{102}-...-\frac{1}{399}-\frac{1}{400}-...-\frac{1}{500}\right)\)
\(B=\frac{1}{101}.\left(1+\frac{1}{2}+...+\frac{1}{101}-\frac{1}{400}-...-\frac{1}{500}\right)\)
Ta thấy vế trong ngoặc của hai biểu thức A và B giống nhau, do đó :
\(\frac{A}{B}=\frac{\left(\frac{1}{400}\right)}{\left(\frac{1}{101}\right)}=\frac{101}{400}\)