\(\frac{1}{7}+\frac{1}{7^2}+\frac{1}{7^3}+...+\frac{1}{7^{100}}.\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 7 2017

Đăt A = \(\frac{1}{7}+\frac{1}{7^2}+\frac{1}{7^3}+......+\frac{1}{7^{100}}\)

\(\Rightarrow7A=1+\frac{1}{7}+\frac{1}{7^2}+.....+\frac{1}{7^{100}}\)

\(\Rightarrow7A-A=1-\frac{1}{7^{100}}\)

\(\Rightarrow6A=1-\frac{1}{7^{100}}\)

\(\Rightarrow A=\frac{1-\frac{1}{7^{100}}}{6}\)

9 tháng 8 2019

\(bai1:a,\frac{3}{7}\cdot\frac{-5}{9}+\frac{4}{9}\cdot\frac{3}{7}-\frac{3}{7}\cdot\frac{8}{9}\)

\(< =>\frac{-15}{63}+\frac{12}{63}-\frac{24}{63}\)

\(< =>\frac{-15+12-24}{63}\)

\(< =>\frac{-3}{7}\)

\(b,1\frac{13}{15}\cdot0,75-\left(\frac{11}{20}+25\%\right):\frac{7}{5}\)

\(< =>\frac{28}{15}\cdot\frac{3}{4}-\left(\frac{11}{20}+\frac{1}{4}\right):\frac{7}{5}\)

\(< =>\frac{7}{5}-\frac{4}{5}:\frac{7}{5}\)

\(< =>\frac{7}{5}-\frac{4}{7}\)

\(< =>\frac{29}{35}\)

\(bai2:\)

\(a,\frac{-3}{4}\cdot x-\frac{4}{10}=\frac{1}{5}\)

\(< =>\frac{-3}{4}\cdot x=\frac{1}{5}+\frac{4}{10}\)

\(< =>\frac{-3}{4}\cdot x=\frac{3}{5}\)

\(< =>x=\frac{3}{5}:\frac{-3}{4}\)

\(< =>x=\frac{-4}{5}\)

\(b,3\left(x-\frac{1}{3}\right)+\frac{1}{3}x=\frac{1}{19}:\frac{12}{19}\)

\(< =>3\left(x-\frac{1}{3}\right)+\frac{1}{3}x=\frac{1}{12}\)

\(< =>\left[3\left(x-\frac{1}{3}\right)\right]=\frac{1}{12}< =>x-\frac{1}{3}=\frac{1}{12}:3=\frac{1}{36}=>x=\frac{1}{36}+\frac{1}{3}=>x=\frac{13}{36}\)

\(< =>\left[\frac{1}{3}\cdot x\right]=\frac{1}{12}< =>x=\frac{1}{12}:\frac{1}{3}=>x=\frac{1}{4}\)

9 tháng 8 2019

Bài 1:

a)\(\frac{3}{7}.\frac{-5}{9}+\frac{4}{9}.\frac{3}{7}-\frac{3}{7}.\frac{8}{9}\)                                 b,\(1\frac{13}{15}.0,75-\left(\frac{11}{20}+25\%\right):\frac{7}{5}\)

 \(=\frac{3}{7}.(\frac{-5}{9}+\frac{4}{9}-\frac{8}{9})\)                                       \(=\frac{28}{15}.\frac{3}{4}-\left(\frac{11}{20}+\frac{5}{20}\right):\frac{7}{5}\) 

  \(=\frac{3}{7}.\frac{-9}{9}\)                                                                  \(=\frac{7}{5}-\frac{4}{5}:\frac{7}{5}\)

\(=\frac{-3}{7}\)                                                                           \(=\frac{7}{5}-\frac{4}{7}\)

                                                                                               \(=\frac{29}{35}\)

Bài 2:

a)\(\frac{-3}{4}x-\frac{4}{10}=\frac{1}{5}\)                                               b,\(3\left(x-\frac{1}{3}\right)+\frac{1}{3}x=\frac{1}{19}:\frac{12}{19}\)

  \(\frac{-3}{4}x\)           \(=\frac{1}{5}+\frac{4}{10}\)                                     \(3\left(x-\frac{1}{3}\right)+\frac{1}{3}x=\frac{1}{12}\)

\(\frac{-3}{4}x\)             \(=\frac{3}{5}\)                                            \(\left(x.3-\frac{1}{3}.3\right)+\frac{1}{3}x=\frac{1}{12}\)     

         \(x\)              \(=\frac{3}{5}:\frac{-3}{4}\)                                        \(\left(x.3-1\right)+\frac{1}{3}x=\frac{1}{12}\)                                         

         \(x\)              \(=\frac{4}{-5}\)                                                   \(x.\left(3+\frac{1}{3}\right)-1=\frac{1}{12}\)

                                                                                                             \(x.\left(3+\frac{1}{3}\right)=\frac{1}{12}+1\) 

                                                                                                                          \(x.\frac{10}{3}=\frac{13}{12}\) 

                                                                                                                                    \(x=\frac{13}{12}:\frac{10}{3}\) 

                                                                                                                                     \(x=\frac{13}{40}\)                             

26 tháng 10 2020

A=\(\frac{1}{7}+\frac{1}{7^2}+\frac{1}{7^3}+...+\frac{1}{7^{100}}\)

\(\Rightarrow7A=(1+\frac{1}{7}+\frac{1}{7^2}+\frac{1}{7^3}+...+\frac{1}{7^{99}})-\left(\frac{1}{7}+\frac{1}{7^2}+\frac{1}{7^3}+....+\frac{1}{7^{100}}\right)\)

\(\Rightarrow6A=\left(1-\frac{1}{7^{99}}\right)\)

\(\Rightarrow A=\left(1-\frac{1}{7^{99}}\right):6\)

Câu b tương tự nha

26 tháng 10 2020

a) \(A=\frac{1}{7}+\frac{1}{7^2}+\frac{1}{7^3}+...........+\frac{1}{7^{100}}\)

\(\Rightarrow7A=1+\frac{1}{7}+\frac{1}{7^2}+.........+\frac{1}{7^{99}}\)

\(\Rightarrow7A-A=6A=1-\frac{1}{7^{100}}\)

\(\Rightarrow A=\frac{1-\frac{1}{7^{100}}}{6}\)

24 tháng 7 2018

Bạn đăng ít một thôi!

24 tháng 7 2018

mk lỡ đăng rồi bạn ạ 

27 tháng 6 2019

\(a,\frac{1}{2}+\frac{2}{3}x=\frac{4}{5}\)

=> \(\frac{2}{3}x=\frac{4}{5}-\frac{1}{2}=\frac{3}{10}\)

=> \(x=\frac{3}{10}:\frac{2}{3}=\frac{9}{20}\)

Vậy \(x\in\left\{\frac{9}{20}\right\}\)

\(b,x+\frac{1}{4}=\frac{4}{3}\)

=> \(x=\frac{4}{3}-\frac{1}{4}=\frac{13}{12}\)

Vậy \(x\in\left\{\frac{13}{12}\right\}\)

\(c,\frac{3}{5}x-\frac{1}{2}=-\frac{1}{7}\)

=> \(\frac{3}{5}x=-\frac{1}{7}+\frac{1}{2}=\frac{5}{14}\)

=> \(x=\frac{5}{14}:\frac{3}{5}=\frac{25}{42}\)

Vậy \(x\in\left\{\frac{25}{42}\right\}\)

\(d,\left|x+5\right|-6=9\)

=> \(\left|x+5\right|=9+6=15\)

=> \(\left[{}\begin{matrix}x+5=15\\x+5=-15\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x=15-5=10\\x=-15-5=-20\end{matrix}\right.\)

Vậy \(x\in\left\{10;-20\right\}\)

\(e,\left|x-\frac{4}{5}\right|=\frac{3}{4}\)

=> \(\left[{}\begin{matrix}x-\frac{4}{5}=\frac{3}{4}\\x-\frac{4}{5}=-\frac{3}{4}\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x=\frac{3}{4}+\frac{4}{5}=\frac{31}{20}\\x=-\frac{3}{4}+\frac{4}{5}=\frac{1}{20}\end{matrix}\right.\)

Vậy \(x\in\left\{\frac{31}{20};\frac{1}{20}\right\}\)

\(f,\frac{1}{2}-\left|x\right|=\frac{1}{3}\)

=> \(\left|x\right|=\frac{1}{2}-\frac{1}{3}\)

=> \(\left|x\right|=\frac{1}{6}\)

=> \(\left[{}\begin{matrix}x=\frac{1}{6}\\x=-\frac{1}{6}\end{matrix}\right.\)

Vậy \(x\in\left\{\frac{1}{6};-\frac{1}{6}\right\}\)

\(g,x^2=16\)

=> \(\left|x\right|=\sqrt{16}=4\)

=> \(\left[{}\begin{matrix}x=4\\x=-4\end{matrix}\right.\)

vậy \(x\in\left\{4;-4\right\}\)

\(h,\left(x-\frac{1}{2}\right)^3=\frac{1}{27}\)

=> \(x-\frac{1}{2}=\sqrt[3]{\frac{1}{27}}=\frac{1}{3}\)

=> \(x=\frac{1}{3}+\frac{1}{2}=\frac{5}{6}\)

Vậy \(x\in\left\{\frac{5}{6}\right\}\)

\(i,3^3.x=3^6\)

\(x=3^6:3^3=3^3=27\)

Vậy \(x\in\left\{27\right\}\)

\(J,\frac{1,35}{0,2}=\frac{1,25}{x}\)

=> \(x=\frac{1,25.0,2}{1,35}=\frac{5}{27}\)

Vậy \(x\in\left\{\frac{5}{27}\right\}\)

\(k,1\frac{2}{3}:x=6:0,3\)

=> \(\frac{5}{3}:x=20\)

=> \(x=\frac{5}{3}:20=\frac{1}{12}\)

Vậy \(x\in\left\{\frac{1}{12}\right\}\)