Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
a )
Xét \(\Delta ABI\)và \(\Delta ACI\) có :
\(\hept{\begin{cases}AB=AC\left(GT\right)\\AI\left(chung\right)\\BI=CI\left(GT\right)\end{cases}\Rightarrow\Delta ABI=\Delta ACI\left(c.c.c\right)}\)
\(\Rightarrow\widehat{ABI}=\widehat{ACI}\)( 2 góc tương ứng )
\(\widehat{BAI}=\widehat{CAI}\)( 2 góc tương ứng )
Mà \(AI\)nằm trong \(\widehat{BAC}\)
\(\Rightarrow AI\)là p/g \(\widehat{BAC}\)
b )
Ta có : \(\widehat{ABI}+\widehat{ABM}=180^0\) ( 2 góc kề bù )
\(\Rightarrow\widehat{ABM}=180^0-\widehat{ABI}\)
\(\widehat{ACI}+\widehat{ACN}=180^0\)( 2 góc kề bù )
\(\Rightarrow\widehat{ACN}=180^0-\widehat{ACI}\)
Lại có : \(\widehat{ABI}=\widehat{ACI}\)
\(\Rightarrow180^0-\widehat{ABI}=180^0-\widehat{ACI}\)
\(\Rightarrow\widehat{ABM}=\widehat{ACN}\)
Xét \(\Delta ABM\)và \(\Delta ACN\)có :
\(\hept{\begin{cases}AB=AC\left(GT\right)\\\widehat{ABM}=\widehat{ACN}\\BM=CN\left(GT\right)\end{cases}\Rightarrow\Delta ABM=\Delta ACN\left(c.g.c\right)}\)
\(\Rightarrow AM=AN\)( 2 cạnh tương ứng )
c )
Do \(\widehat{BAI}=\widehat{CAI}\left(theo:a\right)\)
hay \(\widehat{BAK}=\widehat{CAK}\)
Xét \(\Delta ABK\)và \(\Delta ACK\)có :
\(\hept{\begin{cases}AB=AC\left(GT\right)\\\widehat{BAK}=\widehat{CAK}\left(cmt\right)\Rightarrow\\AK\left(chung\right)\end{cases}\Delta ABK=\Delta ACK\left(c.g.c\right)}\)
\(\Rightarrow\widehat{ABK}=\widehat{ACK}\)( 2 góc tương ứng )
Mà \(\widehat{ABK}=90^0\left(BK\perp AB\right)\)
\(\Rightarrow\widehat{ACK}=90^0\)
\(\Rightarrow KC\perp AC\left(Đpcm\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
A B C E K H
a, Xét t/g ABE và t/g KBE có:
góc BAE = góc BKE = 90 độ
BE chung
góc ABE = góc KBE (gt)
=> t/g ABE = t/g KBE (ch-gn)
b, Do t/g ABE = t/g KBE (cm câu a)
=> góc AEB = góc KEB (2 góc tương ứng)
=> BE là phân giác của góc AEK
c, Xét tg vuông ABC có: góc ABC + góc C = 90 độ
=> góc ABC = 90 độ - góc C = 60 độ
=> góc ABE = góc EBC = góc ABC/2 = 30 độ
Xét tg BEC có góc BCE = góc EBC = 30 độ
=> tg BEC cân tại E
d, tg BEC cân tại E có EK là đường cao
=> EK cũng là đường trung tuyến
=> KB = KC
Xét tg BHC vuông tại H có: HK là đường trung tuyến
=> HK = 1/2 BC = KB = KC
Hay KH = KC (đpcm)
P/s: Trong 1 tam giác vuông bất kỳ, đường trung tuyến ứng với cạnh huyền của tam giác sẽ có độ dài bằng 1/2 cạnh huyền
![](https://rs.olm.vn/images/avt/0.png?1311)
A B C H D 35°
GT| \(\widehat{BAC}=90\text{°}\) \(AH\perp BC\)tại H Trên đường thẳng vuông góc tại B lấy D sao cho BD = AH \(\widehat{BAH}=35\text{°}\) |
KL | AB // DH |
Xét \(\Delta AHB\&\Delta DBH\) ta có :
AH = BD ( hình vẽ )
BH cạnh chung
AB = HD ( gt )
=> \(\Delta AHB=\Delta DBH\)( c.c.c )
b) Ta có :
\(\Delta AHB=\Delta DBH\) ( cmt )
\(\Rightarrow\widehat{ABH}=\widehat{DBH}\)( 2 góc tương ứng )
mà \(\widehat{ABH}\&\widehat{DBH}\)là 2 góc SLT
=> AB // DH
![](https://rs.olm.vn/images/avt/0.png?1311)
Câu 1:
a: Ta có:ΔABC cân tại A
mà AH là đường cao
nên AH là đường phân giác và H là trung điểm của BC
hay \(\widehat{BAH}=\widehat{CAH}\) và HB=HC
b: HB=HC=BC/2=4(cm)
nên AH=3(cm)
c: Sửa đề; D và E là chân đường cao kẻ từ H xuống AB và AC
Xét ΔADH vuông tại D và ΔAEH vuông tại E có
AH chung
\(\widehat{DAH}=\widehat{EAH}\)
Do đó: ΔAHD=ΔAHE
Suy ra: HD=HE
hay ΔHDE cân tại H
![](https://rs.olm.vn/images/avt/0.png?1311)
Câu 1:
a: Xét ΔABE vuông tại A và ΔHBE vuông tại H có
BE chung
góc ABE=góc HBE
Do đo: ΔABE=ΔHBE
b: Ta có:BA=BH
EA=EH
Do đó:BE là đường trung trực của AH
c: Ta có: EA=EH
mà EH<EC
nên EA<EC