Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình sửa đề bài nha:
\(12\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)
\(=\frac{1}{2}\left(5^2-1\right)\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)
\(=\frac{1}{2}\left(5^4-1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)
\(=\frac{1}{2}\left(5^8-1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)
\(=\frac{1}{2}\left(5^{16}-1\right)\left(5^{16}+1\right)\)
\(=\frac{1}{2}\left(5^{32}-1\right)\)
\(=\frac{5^{32}-1}{2}\)
Chúc bạn học tốt!
I am a loser: Bạn chép đề sai nha, mình sửa luôn.
\(A=3\cdot\left(2^2+1\right)\cdot\left(2^4+1\right)\cdot\left(2^8+1\right)\cdot\left(2^{16}+1\right)\)
\(A=\left(2^2-1\right)\cdot\left(2^2+1\right)\cdot\left(2^4+1\right)\cdot\left(2^8+1\right)\cdot\left(2^{16}+1\right)\)
\(A=\left(2^4-1\right)\cdot\left(2^4+1\right)\cdot\left(2^8+1\right)\cdot\left(2^{16}+1\right)\)
\(A=\left(2^8-1\right)\cdot\left(2^8+1\right)\cdot\left(2^{16}+1\right)\)
\(A=\left(2^{16}-1\right)\cdot\left(2^{16}+1\right)\)
\(A=2^{32}-1\)
Vậy...
Sửa đề
B = 2(3+1)(32+1)(34+1)(38+1)(316+1)
= (3-1)(3+1)(32+1)(34+1)(38+1)(316+1)
= (32-1)(32+1)(34+1)(38+1)(316+1)
= (34-1)(34+1)(38+1)(316+1)
= (38-1)(38+1)(316+1)
= (316-1)(316+1)
= (332-1)
12
= \(\frac{24}{2}\)
= \(\frac{1}{2}\left(25-1\right)\)
= \(\frac{1}{2}\left(5^2-1\right)\)
Chép đề sai kìa
\(A=3\left(2^3+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(A=\left(2^2-1\right).9\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(A=\frac{9}{5}.\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(A=\frac{9}{5}.\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(A=\frac{9}{5}.\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(A=\frac{9}{5}.\left(2^{16}-1\right)\left(2^{16}+1\right)\)
\(A=\frac{9}{5}.\left(2^{32}-1\right)\)
\(\left(2x+1\right)^2-\left(3x+2\right)^2\)
\(=\left(2x+1+3x+2\right).\left(2x+1-3x-2\right)\)
\(=\left(5x+3\right).\left(-x-1\right)\)
a) ( x - 1 )2 + ( x - 2 )2 = 2( x + 4 )2 - ( 22x + 27 )
<=> x2 - 2x + 1 + x2 - 4x + 4 = 2( x2 + 8x + 16 ) - 22x - 27
<=> 2x2 - 6x + 5 = 2x2 + 16x + 32 - 22x - 27
<=> 2x2 - 6x - 2x2 - 16x + 22x = 32 - 27 - 5
<=> 0x = 0 ( đúng ∀ x ∈ R )
Vậy phương trình có vô số nghiệm
b) ( x + 2 )2 - 2( x - 3 ) = ( x + 1 )2
<=> x2 + 4x + 4 - 2x + 6 = x2 + 2x + 1
<=> x2 + 2x - x2 - 2x = 1 - 4 - 6
<=> 0x = -9 ( vô lí )
Vậy phương trình vô nghiệm
c) ( x + 1 )3 - x2( x + 3 ) = 2
<=> x3 + 3x2 + 3x + 1 - x3 - 3x2 = 2
<=> 3x + 1 = 2
<=> 3x = 1
<=> x = 1/3
a)
\(x^2-2x+1+x^2-4x+4=2\left(x^2+8x+16\right)-22x-27\)
\(2x^2-6x+5=2x^2+16x+32-22x-27\)
\(-6x+5=-6x+5\)
\(0=0\left(llđ\forall x\right)\)
Vậy \(x=R\)
b)
\(x^2+4x+4-2x+6=x^2+2x+1\)
\(x^2+2x+10=x^2+2x+1\)
\(10=1\)
\(0=-9\left(sai\right)\)
Vậy phương trình vô nghiệm
c)
\(x^3+3x^2+3x+1-x^3-3x^2=2\)
\(3x+1=2\)
\(3x=1\)
\(x=\frac{1}{3}\)
\(4A=4\left(5+1\right)\left(5^2+1\right)....\left(5^{2048}+1\right)=\left(5-1\right)\left(5+1\right)\left(5^2+1\right)....\left(5^{2048}+1\right)=\left(5^2-1\right)\left(5^2+1\right).....\left(5^{2048}+1\right)\left(hdt\left(a-b\right)\left(a+b\right)=a^2-b^2\right)=\left(5^4-1\right)\left(5^4+1\right)......\left(5^{2048}+1\right)=\left(5^8-1\right).....\left(5^{2048}+1\right)=.....=\left(5^{1024}+1\right)\left(5^{1024}-1\right)\left(5^{2048}+1\right)=\left(5^{2048}-1\right)\left(5^{2048}+1\right)=5^{4096}-1\)
\(\Rightarrow A=\frac{5^{4096}-1}{4}nha\)