K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 8 2019

Sửa đề

B = 2(3+1)(32+1)(34+1)(38+1)(316+1)

= (3-1)(3+1)(32+1)(34+1)(38+1)(316+1)

= (32-1)(32+1)(34+1)(38+1)(316+1)

= (34-1)(34+1)(38+1)(316+1)

= (38-1)(38+1)(316+1)

= (316-1)(316+1)

= (332-1)

13 tháng 8 2019

\(4A=4\left(5+1\right)\left(5^2+1\right)....\left(5^{2048}+1\right)=\left(5-1\right)\left(5+1\right)\left(5^2+1\right)....\left(5^{2048}+1\right)=\left(5^2-1\right)\left(5^2+1\right).....\left(5^{2048}+1\right)\left(hdt\left(a-b\right)\left(a+b\right)=a^2-b^2\right)=\left(5^4-1\right)\left(5^4+1\right)......\left(5^{2048}+1\right)=\left(5^8-1\right).....\left(5^{2048}+1\right)=.....=\left(5^{1024}+1\right)\left(5^{1024}-1\right)\left(5^{2048}+1\right)=\left(5^{2048}-1\right)\left(5^{2048}+1\right)=5^{4096}-1\)

13 tháng 8 2019

\(\Rightarrow A=\frac{5^{4096}-1}{4}nha\)

11 tháng 8 2019

Mình sửa đề bài nha:

\(12\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)

\(=\frac{1}{2}\left(5^2-1\right)\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)

\(=\frac{1}{2}\left(5^4-1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)

\(=\frac{1}{2}\left(5^8-1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)

\(=\frac{1}{2}\left(5^{16}-1\right)\left(5^{16}+1\right)\)

\(=\frac{1}{2}\left(5^{32}-1\right)\)

\(=\frac{5^{32}-1}{2}\)

Chúc bạn học tốt!

11 tháng 8 2019

bạn tính ra \(\frac{1}{2}\)kiểu gì đấy chỉ mình với

11 tháng 8 2019

I am a loser: Bạn chép đề sai nha, mình sửa luôn.

\(A=3\cdot\left(2^2+1\right)\cdot\left(2^4+1\right)\cdot\left(2^8+1\right)\cdot\left(2^{16}+1\right)\)

\(A=\left(2^2-1\right)\cdot\left(2^2+1\right)\cdot\left(2^4+1\right)\cdot\left(2^8+1\right)\cdot\left(2^{16}+1\right)\)

\(A=\left(2^4-1\right)\cdot\left(2^4+1\right)\cdot\left(2^8+1\right)\cdot\left(2^{16}+1\right)\)

\(A=\left(2^8-1\right)\cdot\left(2^8+1\right)\cdot\left(2^{16}+1\right)\)

\(A=\left(2^{16}-1\right)\cdot\left(2^{16}+1\right)\)

\(A=2^{32}-1\)

Vậy...

10 tháng 8 2019

\(A=3\left(2^3+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(A=\left(2^2-1\right).9\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(A=\frac{9}{5}.\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(A=\frac{9}{5}.\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(A=\frac{9}{5}.\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(A=\frac{9}{5}.\left(2^{16}-1\right)\left(2^{16}+1\right)\)

\(A=\frac{9}{5}.\left(2^{32}-1\right)\)

11 tháng 8 2019

12

= \(\frac{24}{2}\)

= \(\frac{1}{2}\left(25-1\right)\)

= \(\frac{1}{2}\left(5^2-1\right)\)

Chép đề sai kìa

25 tháng 9 2021

a) \(A=\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)=\dfrac{1}{2}\left(3-1\right)\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)=\dfrac{1}{2}\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)=\dfrac{1}{2}\left(3^{32}-1\right)< 3^{32}-1=B\)

b) \(A=2011.2013=\left(2012-1\right)\left(2012+1\right)=2012^2-1< 2012^2=B\)

12 tháng 9 2021

\(\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)=\dfrac{1}{2}\left(3-1\right)\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)=\dfrac{1}{2}.\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)=\dfrac{1}{2}\left(3^{32}-1\right)=\dfrac{3^{32}}{2}-\dfrac{1}{2}\)

\(\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

\(=\dfrac{\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)}{2}\)

\(=\dfrac{3^{32}-1}{2}\)

\(\left(2x+1\right)^2-\left(3x+2\right)^2\)

\(=\left(2x+1+3x+2\right).\left(2x+1-3x-2\right)\)

\(=\left(5x+3\right).\left(-x-1\right)\)