Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
I am a loser: Bạn chép đề sai nha, mình sửa luôn.
\(A=3\cdot\left(2^2+1\right)\cdot\left(2^4+1\right)\cdot\left(2^8+1\right)\cdot\left(2^{16}+1\right)\)
\(A=\left(2^2-1\right)\cdot\left(2^2+1\right)\cdot\left(2^4+1\right)\cdot\left(2^8+1\right)\cdot\left(2^{16}+1\right)\)
\(A=\left(2^4-1\right)\cdot\left(2^4+1\right)\cdot\left(2^8+1\right)\cdot\left(2^{16}+1\right)\)
\(A=\left(2^8-1\right)\cdot\left(2^8+1\right)\cdot\left(2^{16}+1\right)\)
\(A=\left(2^{16}-1\right)\cdot\left(2^{16}+1\right)\)
\(A=2^{32}-1\)
Vậy...
Sửa đề
B = 2(3+1)(32+1)(34+1)(38+1)(316+1)
= (3-1)(3+1)(32+1)(34+1)(38+1)(316+1)
= (32-1)(32+1)(34+1)(38+1)(316+1)
= (34-1)(34+1)(38+1)(316+1)
= (38-1)(38+1)(316+1)
= (316-1)(316+1)
= (332-1)
Mình sửa đề bài nha:
\(12\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)
\(=\frac{1}{2}\left(5^2-1\right)\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)
\(=\frac{1}{2}\left(5^4-1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)
\(=\frac{1}{2}\left(5^8-1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)
\(=\frac{1}{2}\left(5^{16}-1\right)\left(5^{16}+1\right)\)
\(=\frac{1}{2}\left(5^{32}-1\right)\)
\(=\frac{5^{32}-1}{2}\)
Chúc bạn học tốt!
Ta có:
a) A = 2018 x 2020 = (2019 - 1) x (2019 + 1)
Áp dụng hằng đẳng thức thứ ba ta có:
A = 208 x 2020 = \(2019^2-1^2=2019^2-1\)
Vì \(2019^2-1< 2019^2\)
\(\Rightarrow\)A < B
b) A = \(\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2^2-1^2\right)\left(2^2+1^2\right)\left(2^4+1^2\right)\left(2^8+1^2\right)\left(2^{16}+1^2\right)\)
\(=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2^{16}-1\right)\left(2^{16}+1\right)\)
\(=2^{32}-1\)
Vì \(2^{32}-1< 2^{32}\)
\(\Rightarrow\)A < B
a) Áp dụng hàng đăng thức (a - b) (a + b) = a2 - b2
Ta có : A = 2018.2020 = (2019 - 1) (2019 + 1) = 20192 - 1
Mà B = 20192
Nên A < B
Bài 1 : (x + 5)3 - x3 - 125
= (x + 5 - x)[(x + 5)2 + x(x + 5) + x2] - 125
= 5(x2 + 10x + 25 + x2 + 5x + x2)
= 5(3x2 + 15x + 25) - 125
= 5(3x2 + 15x + 25 - 25)
= 5(3x2 + 15x)
12
= \(\frac{24}{2}\)
= \(\frac{1}{2}\left(25-1\right)\)
= \(\frac{1}{2}\left(5^2-1\right)\)
Chép đề sai kìa
\(A=3\left(2^3+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(A=\left(2^2-1\right).9\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(A=\frac{9}{5}.\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(A=\frac{9}{5}.\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(A=\frac{9}{5}.\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(A=\frac{9}{5}.\left(2^{16}-1\right)\left(2^{16}+1\right)\)
\(A=\frac{9}{5}.\left(2^{32}-1\right)\)