Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. \(\Leftrightarrow\left(2x-1\right)\left(3x+1\right)< 0\)
\(\Rightarrow-\frac{1}{3}< x< \frac{1}{2}\)
2. \(\Leftrightarrow\left(x-2\right)\left(3-2x\right)>0\)
\(\Rightarrow\frac{3}{2}< x< 2\)
3. \(\Leftrightarrow\left(5x-3\right)^2>0\)
\(\Rightarrow x\ne\frac{3}{5}\)
4. \(\Leftrightarrow-3\left(x-\frac{1}{6}\right)-\frac{59}{12}< 0\)
\(\Rightarrow x\in R\)
5. \(\Leftrightarrow2\left(x-1\right)^2+5\ge0\)
\(\Rightarrow x\in R\)
6. \(\Leftrightarrow\left(x+2\right)\left(8x+7\right)\le0\)
\(\Rightarrow-2\le x\le-\frac{7}{8}\)
7.
\(\Leftrightarrow\left(x-1\right)^2+2>0\)
\(\Rightarrow x\in R\)
8. \(\Leftrightarrow\left(3x-2\right)\left(2x+1\right)\ge0\)
\(\Rightarrow\left[{}\begin{matrix}x\le-\frac{1}{2}\\x\ge\frac{2}{3}\end{matrix}\right.\)
9. \(\Leftrightarrow\frac{1}{3}\left(x+3\right)\left(x+6\right)< 0\)
\(\Rightarrow-6< x< -3\)
10. \(\Leftrightarrow x^2-6x+9>0\)
\(\Leftrightarrow\left(x-3\right)^2>0\)
\(\Rightarrow x\ne3\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2-8x+7< 0\\x^2-8x+12>0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}1< x< 7\\\left[{}\begin{matrix}x< 2\\x>6\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}1< x< 2\\6< x< 7\end{matrix}\right.\)
\(x+2\sqrt{7-x}=2\sqrt{x-1}+\sqrt{-x^2+8x-7}+1\) ( ĐKXĐ : \(1\le x\le7\) )
\(\Leftrightarrow x-1-2\sqrt{x-1}+2\sqrt{7-x}-\sqrt{\left(x-1\right)\left(7-x\right)}=0\)
\(\Leftrightarrow\sqrt{x-1}\left(\sqrt{x-1}-2\right)-\sqrt{7-x}\left(\sqrt{x-1}-2\right)=0\)
\(\Leftrightarrow\left(\sqrt{x-1}-2\right)\left(\sqrt{x-1}-\sqrt{7-x}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-1}-2=0\\\sqrt{x-1}-\sqrt{7-x}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=4\end{matrix}\right.\left(N\right)\)
Vậy....
Lượng giác hóa nghĩa là sử dụng kiến thức 11 thoải mái đúng ko nhỉ?
\(\Leftrightarrow6x+7+\sqrt[3]{6x+7}=\left(2x+2\right)^3+2x+2\)
Hàm \(f\left(t\right)=t^3+t\) có \(f'\left(t\right)=3t^2+1>0\Rightarrow f\left(t\right)\) đồng biến trên R
\(\Rightarrow\left(1\right)\Leftrightarrow2x+2=\sqrt[3]{6x+7}\Leftrightarrow\left(6x+7\right)-1=3\sqrt[3]{6x+7}\)
Đặt \(\sqrt[3]{6x+7}=t\Rightarrow t^3-3t-1=0\)
Xét hàm \(f\left(t\right)=t^3-3t-1\) bậc 3 nên có tối đa 3 nghiệm
\(f\left(-2\right).f\left(-1\right)=\left(-3\right).1< 0\) ; \(f\left(-1\right).f\left(0\right)=-1< 0\) ; \(f\left(0\right).f\left(2\right)=-1.1< 0\)
\(\Rightarrow\) Cả 3 nghiệm của t đều thuộc \(\left[-2;2\right]\)
\(\Rightarrow\dfrac{t}{2}\in\left[-1;1\right]\Rightarrow\) đặt \(\dfrac{t}{2}=cosu\) hay \(t=2cosu\)
Pt trở thành:
\(8cos^3u-6cosu-1=0\Leftrightarrow4cos^3u-3cosu=\dfrac{1}{2}\)
\(\Leftrightarrow cos3u=\dfrac{1}{2}\Rightarrow3u=\pm\dfrac{\pi}{3}+k2\pi\)
\(\Rightarrow u=\pm\dfrac{\pi}{9}+\dfrac{k2\pi}{3}\)
\(\Rightarrow t=2cosu=\left\{2cos\dfrac{\pi}{9};2cos\dfrac{5\pi}{9};2cos\dfrac{7\pi}{9}\right\}\)
\(\Rightarrow\left[{}\begin{matrix}\sqrt[3]{6x+7}=2cos\dfrac{\pi}{9}\\\sqrt[3]{6x+7}=2cos\dfrac{5\pi}{9}\\\sqrt[3]{6x+7}=2cos\dfrac{7\pi}{9}\end{matrix}\right.\) \(\Rightarrow x=...\)