Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐK: \(x\ge2\)
\(\dfrac{\sqrt{x^2+1}-\sqrt{x+1}}{x^2+\sqrt{3x-6}}\ge0\)
\(\Leftrightarrow\sqrt{x^2+1}-\sqrt{x+1}\ge0\)
\(\Leftrightarrow\sqrt{x^2+1}\ge\sqrt{x+1}\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+1\ge0\\x^2+1\ge x+1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-1\\x^2-x\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}-1\le x\le0\\x\ge1\end{matrix}\right.\)
Kết hợp điều kiện xác định ta được \(x\ge2\)
1.
ĐK: \(-1\le x\le4\)
Đặt \(\sqrt{x+1}+\sqrt{4-x}=t\left(t\ge0\right)\)
\(\Leftrightarrow\sqrt{\left(x+1\right)\left(4-x\right)}=\frac{t^2-5}{2}\)
\(PT\Leftrightarrow t+\frac{t^2-5}{2}=5\Rightarrow t^2+2t-15=0\) \(\Rightarrow\left[{}\begin{matrix}t=3\\t=-5\left(l\right)\end{matrix}\right.\)
\(t=3\Rightarrow\sqrt{-x^2+3x+4}=2\) \(\Leftrightarrow-x^2+3x+4=4\Rightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\) (tm)
2.
ĐK:\(x\ge4\)
Đặt \(\sqrt{x+4}+\sqrt{x-4}=t\left(t\ge0\right)\)
\(\Rightarrow2\sqrt{x^2-16}=t^2-2x\)
\(PT\Leftrightarrow t=2x-12+t^2-2x\)
\(\Leftrightarrow t^2-t-12=0\Rightarrow\left[{}\begin{matrix}t=4\\t=-3\left(l\right)\end{matrix}\right.\) Giải tiếp như trên.
ĐKXĐ: \(x\ge2\)
Khi đó ta có \(x^2-x+1\ge3\Rightarrow1-2\sqrt{x^2-x+1}< 0\)
Do đó BPT tương đương:
\(\sqrt{2\left(x^2+7x+3\right)}-\sqrt{x^2+x-6}-3\sqrt{x+1}\le0\)
\(\Leftrightarrow\sqrt{2x^2+14x+6}\le\sqrt{x^2+x-6}+3\sqrt{x+1}\)
\(\Leftrightarrow2x^2+14x+6\le x^2+10x+3+6\sqrt{\left(x+1\right)\left(x^2+x-6\right)}\)
\(\Leftrightarrow x^2+4x+3\le6\sqrt{\left(x+1\right)\left(x+3\right)\left(x-2\right)}\)
\(\Leftrightarrow\left(x+1\right)\left(x+3\right)\le6\sqrt{\left(x+1\right)\left(x+3\right)\left(x-2\right)}\)
\(\Leftrightarrow\sqrt{\left(x+1\right)\left(x+3\right)}\le6\sqrt{x-2}\)
\(\Leftrightarrow\left(x+1\right)\left(x+3\right)\le36\left(x-2\right)\)
\(\Leftrightarrow x^2-32x+75\le0\)
\(\Rightarrow16-\sqrt{181}\le x\le16+\sqrt{181}\)
b) Đặt \(\sqrt{x^2-6x+6}=a\left(a\ge0\right)\)
\(\Rightarrow a^2+3-4a=0\)
=> (a - 3).(a - 1) = 0
=> \(\left[{}\begin{matrix}a=3\\a=1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\sqrt{x^2-6x+6}=3\\\sqrt{x^2-6x+6}=1\end{matrix}\right.\)
Bình phương lên giải tiếp nhé!
c) Tương tư câu b nhé
Tớ đã trả lời ở câu hỏi mới nhất r nên xin phép được xóa câu hỏi này nhé