Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: \(\left\{{}\begin{matrix}x\ge1\\\frac{-1-\sqrt{5}}{4}\le x\le-\frac{1}{8}\end{matrix}\right.\)(Có thể chưa chính xác)
\(12x^2+16x+1=2\sqrt{24x^3+12x^2-6x}+4\sqrt{x^2-x}+4\sqrt{8x^3+9x^2+x}\)
Áp dụng AM-GM:
\(2\sqrt{24x^3+12x^2-6x}=2\sqrt{6x\left(4x^2+2x-1\right)}\le6x+\left(4x^2+2x-1\right)=4x^2+8x-1\left(1\right)\)
\(4\sqrt{x^2-x}=2\sqrt{1.\left(4x^2-4x\right)}\le4x^2-4x+1\left(2\right)\)
\(4\sqrt{8x^3+9x^2+x}=2\sqrt{\left(4x^2+4x\right)\left(8x+1\right)}\le\left(4x^2+4x\right)+\left(8x+1\right)=4x^2+12x+1\left(3\right)\)
Cộng \(\left(1\right),\left(2\right),\left(3\right)\), ta có: \(VP\le VT\)
Dấu ''='' xảy ra khi :
\(\left\{{}\begin{matrix}4x^2+2x-1=6x\\4x^2-4x=1\\4x^2+4x=8x+1\end{matrix}\right.\)\(\Rightarrow4x^2-4x-1=0\)
\(\Rightarrow x=\frac{1\pm\sqrt{2}}{2}\) (t/m ĐKXĐ)
a/ ĐKXĐ: ...
\(\Leftrightarrow2\left(x^2-5x-6\right)+\sqrt{x^2-5x-6}-3=0\)
Đặt \(\sqrt{x^2-5x-6}=a\ge0\)
\(2a^2+a-3=0\Rightarrow\left[{}\begin{matrix}a=1\\a=-\frac{3}{2}\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{x^2-5x-6}=1\Leftrightarrow x^2-5x-7=0\)
b/ ĐKXĐ: ...
\(\Leftrightarrow5\sqrt{3x^2-4x-2}-2\left(3x^2-4x-2\right)+3=0\)
Đặt \(\sqrt{3x^2-4x-2}=a\ge0\)
\(-2a^2+5a+3=0\) \(\Rightarrow\left[{}\begin{matrix}a=3\\a=-\frac{1}{2}\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{3x^2-4x-2}=3\Leftrightarrow3x^2-4x-11=0\)
c/ \(\Leftrightarrow x^2+2x-6+\sqrt{2x^2+4x+3}=0\)
Đặt \(\sqrt{2x^2+4x+3}=a>0\Rightarrow x^2+2x=\frac{a^2-3}{2}\)
\(\frac{a^2-3}{2}-6+a=0\Leftrightarrow a^2+2a-15=0\Rightarrow\left[{}\begin{matrix}x=3\\x=-5\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{2x^2+4x+3}=3\Leftrightarrow2x^2+4x-6=0\)
d/ ĐKXĐ: ...
Đặt \(\sqrt{\frac{3x-1}{x}}=a>0\)
\(2a=\frac{1}{a^2}+1\Leftrightarrow2a^3-a^2-1=0\)
\(\Leftrightarrow\left(a-1\right)\left(2a^2+a+1\right)=0\)
\(\Rightarrow a=1\Rightarrow\sqrt{\frac{3x-1}{x}}=1\Leftrightarrow3x-1=x\)
e/ĐKXĐ: ...
\(\Leftrightarrow2\sqrt{\frac{6x-1}{x}}=\frac{x}{6x-1}+1\)
Đặt \(\sqrt{\frac{6x-1}{x}}=a>0\)
\(2a=\frac{1}{a^2}+1\Leftrightarrow2a^3-a^2-1=0\Leftrightarrow\left(a-1\right)\left(2a^2+a+1\right)=0\)
\(\Rightarrow a=1\Rightarrow\sqrt{\frac{6x-1}{x}}=1\Rightarrow6x-1=x\)
f/ ĐKXĐ: ...
Đặt \(\sqrt{\frac{x}{2x-1}}=a>0\)
\(\frac{1}{a}+1+a=3a^2\)
\(\Leftrightarrow3a^3-a^2-a-1=0\)
\(\Leftrightarrow\left(a-1\right)\left(3a^2+2a+1\right)=0\)
\(\Leftrightarrow a=1\Rightarrow\sqrt{\frac{x}{2x-1}}=1\Rightarrow x=2x-1\)
Để giải các phương trình này, chúng ta sẽ làm từng bước như sau: 1. 13x(7-x) = 26: Mở ngoặc và rút gọn: 91x - 13x^2 = 26 Chuyển về dạng bậc hai: 13x^2 - 91x + 26 = 0 Giải phương trình bậc hai này để tìm giá trị của x. 2. (4x-18)/3 = 2: Nhân cả hai vế của phương trình với 3 để loại bỏ mẫu số: 4x - 18 = 6 Cộng thêm 18 vào cả hai vế: 4x = 24 Chia cả hai vế cho 4: x = 6 3. 2xx + 98x2022 = 98x2023: Rút gọn các thành phần: 2x^2 + 98x^2022 = 98x^2023 Chia cả hai vế cho 2x^2022: x + 49 = 49x Chuyển các thành phần chứa x về cùng một vế: 49x - x = 49 Rút gọn: 48x = 49 Chia cả hai vế cho 48: x = 49/48 4. (x+1) + (x+3) + (x+5) + ... + (x+101): Đây là một dãy số hình học có công sai d = 2 (do mỗi số tiếp theo cách nhau 2 đơn vị). Số phần tử trong dãy là n = 101/2 + 1 = 51. Áp dụng công thức tổng của dãy số hình học: S = (n/2)(a + l), trong đó a là số đầu tiên, l là số cuối cùng. S = (51/2)(x + (x + 2(51-1))) = (51/2)(x + (x + 100)) = (51/2)(2x + 100) = 51(x + 50) Vậy, kết quả của các phương trình là: 1. x = giá trị tìm được từ phương trình bậc hai. 2. x = 6 3. x = 49/48 4. S = 51(x + 50)
+ Mấy suy nghĩ:
+ Phương trình có chứa nhân tử 4x2−9x+1. Truy ngược dấu các biểu thức liên hợp ta được
+ Phương trình này có hai nghiệm là:
ĐK: Tìm đk?
Đặt : \(\sqrt{4x+3}+\sqrt{2x+1}=t\)>0
\(t^2=6x+4+2\sqrt{8x^2+10x+3}\)
=> \(t^2-4=6x+2\sqrt{8x^2+10x+3}\)
Ta có phương tringf ẩn t:
\(t=t^2-4-16\)
<=> \(t^2-t-20=0\)
<=> t = -4 ( loại ) hoặc t = 5 ( tm )
Với t = 5, ta có: \(\sqrt{4x+3}+\sqrt{2x+1}=5\)=> giải phương trình này rồi tìm x. Sau đó đối chiếu với điều kiện hak.
Lời giải:
ĐKXĐ: \(x\geq \frac{-1}{2}\)
Đặt $\sqrt{4x+3}=a; \sqrt{2x+1}=b$ $(a,b\geq 0$)
ĐK:\(x\ge\frac{-1}{2}\)
Đặt t = \(\sqrt{4x+3}+\sqrt{2x+1}\left(t\ge0\right)\)
\(t^2=6x+4+2\sqrt{8x^2+10x+3}\)
Thay vào, ta có:
\(t=t^2-20\)\(\Leftrightarrow t^2-t-20=0\)\(\Leftrightarrow\left[{}\begin{matrix}t=5\\t=-4\end{matrix}\right.\)
\(\Rightarrow t=5\)
=>x=3/2
kl:...
#Walker
Lượng giác hóa nghĩa là sử dụng kiến thức 11 thoải mái đúng ko nhỉ?
\(\Leftrightarrow6x+7+\sqrt[3]{6x+7}=\left(2x+2\right)^3+2x+2\)
Hàm \(f\left(t\right)=t^3+t\) có \(f'\left(t\right)=3t^2+1>0\Rightarrow f\left(t\right)\) đồng biến trên R
\(\Rightarrow\left(1\right)\Leftrightarrow2x+2=\sqrt[3]{6x+7}\Leftrightarrow\left(6x+7\right)-1=3\sqrt[3]{6x+7}\)
Đặt \(\sqrt[3]{6x+7}=t\Rightarrow t^3-3t-1=0\)
Xét hàm \(f\left(t\right)=t^3-3t-1\) bậc 3 nên có tối đa 3 nghiệm
\(f\left(-2\right).f\left(-1\right)=\left(-3\right).1< 0\) ; \(f\left(-1\right).f\left(0\right)=-1< 0\) ; \(f\left(0\right).f\left(2\right)=-1.1< 0\)
\(\Rightarrow\) Cả 3 nghiệm của t đều thuộc \(\left[-2;2\right]\)
\(\Rightarrow\dfrac{t}{2}\in\left[-1;1\right]\Rightarrow\) đặt \(\dfrac{t}{2}=cosu\) hay \(t=2cosu\)
Pt trở thành:
\(8cos^3u-6cosu-1=0\Leftrightarrow4cos^3u-3cosu=\dfrac{1}{2}\)
\(\Leftrightarrow cos3u=\dfrac{1}{2}\Rightarrow3u=\pm\dfrac{\pi}{3}+k2\pi\)
\(\Rightarrow u=\pm\dfrac{\pi}{9}+\dfrac{k2\pi}{3}\)
\(\Rightarrow t=2cosu=\left\{2cos\dfrac{\pi}{9};2cos\dfrac{5\pi}{9};2cos\dfrac{7\pi}{9}\right\}\)
\(\Rightarrow\left[{}\begin{matrix}\sqrt[3]{6x+7}=2cos\dfrac{\pi}{9}\\\sqrt[3]{6x+7}=2cos\dfrac{5\pi}{9}\\\sqrt[3]{6x+7}=2cos\dfrac{7\pi}{9}\end{matrix}\right.\) \(\Rightarrow x=...\)