K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 7 2016

+ Mấy suy nghĩ:

+ Phương trình có chứa nhân tử 4x2−9x+1. Truy ngược dấu các biểu thức liên hợp ta được 

+ Phương trình này có hai nghiệm là: 

29 tháng 7 2016

ok. thanks bạn nhìu

hihi

29 tháng 11 2019

ĐK : \(x\ne-\frac{1}{2}\);\(x\ge0\)

\(\frac{\left(2x^2+8x+1\right)^2}{\left(2x+1\right)^2}=25x\)

\(25\left(4x^2+4x+1\right)=\left(4x^4+64x^2+1+32x^3+4x^2+16x\right)\)

\(4x^4+32x^3-32x^2-84x-24=0\)

giải tiếp đc nghiệm

1 tháng 9 2017

\(10x^2-9x-8x\sqrt{2x^2-3x+1}+3=0\)

Đặt \(a=\sqrt{2x^2-3x+1}\ge0\) thì:

\(4x^2+3a^2-8ax=0\)

\(\Leftrightarrow\left(2x-a\right)\left(2x-3a\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{a}{2}\\x=\dfrac{3a}{2}\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{\sqrt{2x^2-3x+1}}{2}\\x=\dfrac{3\sqrt{2x^2-3x+1}}{2}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}2x=\sqrt{2x^2-3x+1}\\2x=3\sqrt{2x^2-3x+1}\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}4x^2=2x^2-3x+1\\4x^2=9\left(2x^2-3x+1\right)\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}2x^2+3x-1=0\\\left(3-2x\right)\left(7x-3\right)=0\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{7}\\x=\dfrac{3}{2}\\x=\dfrac{\sqrt{17}}{4}-\dfrac{3}{4}\end{matrix}\right.\)

Để giải các phương trình này, chúng ta sẽ làm từng bước như sau: 1. 13x(7-x) = 26: Mở ngoặc và rút gọn: 91x - 13x^2 = 26 Chuyển về dạng bậc hai: 13x^2 - 91x + 26 = 0 Giải phương trình bậc hai này để tìm giá trị của x. 2. (4x-18)/3 = 2: Nhân cả hai vế của phương trình với 3 để loại bỏ mẫu số: 4x - 18 = 6 Cộng thêm 18 vào cả hai vế: 4x = 24 Chia cả hai vế cho 4: x = 6 3. 2xx + 98x2022 = 98x2023: Rút gọn các thành phần: 2x^2 + 98x^2022 = 98x^2023 Chia cả hai vế cho 2x^2022: x + 49 = 49x Chuyển các thành phần chứa x về cùng một vế: 49x - x = 49 Rút gọn: 48x = 49 Chia cả hai vế cho 48: x = 49/48 4. (x+1) + (x+3) + (x+5) + ... + (x+101): Đây là một dãy số hình học có công sai d = 2 (do mỗi số tiếp theo cách nhau 2 đơn vị). Số phần tử trong dãy là n = 101/2 + 1 = 51. Áp dụng công thức tổng của dãy số hình học: S = (n/2)(a + l), trong đó a là số đầu tiên, l là số cuối cùng. S = (51/2)(x + (x + 2(51-1))) = (51/2)(x + (x + 100)) = (51/2)(2x + 100) = 51(x + 50) Vậy, kết quả của các phương trình là: 1. x = giá trị tìm được từ phương trình bậc hai. 2. x = 6 3. x = 49/48 4. S = 51(x + 50)

nhầm

 

AH
Akai Haruma
Giáo viên
10 tháng 12 2021

1/ ĐKXĐ: $4x^2-4x-11\geq 0$

PT $\Leftrightarrow \sqrt{4x^2-4x-11}=2(4x^2-4x-11)-6$

$\Leftrightarrow a=2a^2-6$ (đặt $\sqrt{4x^2-4x-11}=a, a\geq 0$)

$\Leftrightarrow 2a^2-a-6=0$

$\Leftrightarrow (a-2)(2a+3)=0$

Vì $a\geq 0$ nên $a=2$

$\Leftrightarrow \sqrt{4x^2-4x-11}=2$

$\Leftrightarrow 4x^2-4x-11=4$

$\Leftrightarrow 4x^2-4x-15=0$
$\Leftrightarrow (2x-5)(2x+3)=0$

$\Rightarrow x=\frac{5}{2}$ hoặc $x=\frac{-3}{2}$ (tm)

AH
Akai Haruma
Giáo viên
10 tháng 12 2021

2/ ĐKXĐ: $x\in\mathbb{R}$

PT $\Leftrightarrow \sqrt{3x^2+9x+8}=\frac{1}{3}(3x^2+9x+8)-\frac{14}{3}$

$\Leftrightarrow a=\frac{1}{3}a^2-\frac{14}{3}$ (đặt $\sqrt{3x^2+9x+8}=a, a\geq 0$)

$\Leftrightarrow a^2-3a-14=0$

$\Rightarrow a=\frac{3+\sqrt{65}}{2}$ (do $a\geq 0$)

$\Leftrightarrow 3x^2+9x+8=\frac{37+3\sqrt{65}}{2}$

$\Rightarrow x=\frac{1}{2}(-3\pm \sqrt{23+2\sqrt{65}})$

6 tháng 12 2020

ĐKXĐ: \(\left\{{}\begin{matrix}x\ge1\\\frac{-1-\sqrt{5}}{4}\le x\le-\frac{1}{8}\end{matrix}\right.\)(Có thể chưa chính xác)

\(12x^2+16x+1=2\sqrt{24x^3+12x^2-6x}+4\sqrt{x^2-x}+4\sqrt{8x^3+9x^2+x}\)

Áp dụng AM-GM:

\(2\sqrt{24x^3+12x^2-6x}=2\sqrt{6x\left(4x^2+2x-1\right)}\le6x+\left(4x^2+2x-1\right)=4x^2+8x-1\left(1\right)\)

\(4\sqrt{x^2-x}=2\sqrt{1.\left(4x^2-4x\right)}\le4x^2-4x+1\left(2\right)\)

\(4\sqrt{8x^3+9x^2+x}=2\sqrt{\left(4x^2+4x\right)\left(8x+1\right)}\le\left(4x^2+4x\right)+\left(8x+1\right)=4x^2+12x+1\left(3\right)\)

Cộng \(\left(1\right),\left(2\right),\left(3\right)\), ta có: \(VP\le VT\)

Dấu ''='' xảy ra khi :

\(\left\{{}\begin{matrix}4x^2+2x-1=6x\\4x^2-4x=1\\4x^2+4x=8x+1\end{matrix}\right.\)\(\Rightarrow4x^2-4x-1=0\)

\(\Rightarrow x=\frac{1\pm\sqrt{2}}{2}\) (t/m ĐKXĐ)