Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
với \(n⋮2\Rightarrow n=2k\)
(8n+1).(6n+5)=(8.2k+1)(6.2k+5)
=(16k+1).(12k+5)
=(...1).(...5)
=(...5)
\(\Rightarrow\)(8n+1).(6n+5) không chia hết cho 2 (1)
với n không chia hết cho 2\(\Rightarrow\)2=2k+1
(8n+1).(6n+5)=[8.(2k+1)+1].[6.(2k+1)+5]
=(16k+8+1).(12k+6+5)
=(16k+9).(12k+11)
=(...9).(...1)
=(...9)
\(\Rightarrow\)(8n+1).(6n+5) không chia hết cho 2 (2)
Từ (1) và (2)
\(\Rightarrow\)(8n+1).(6n+5) không chia hết cho 2
điều phải chứng minh
bạn ơi (...1) đọc là chữ số tận cùng của 1 đó
Xét n lẻ => 8n+1 lẻ, 6n+5 lẻ => (8n+1).(6n+5) lẻ => không chia hết cho 2.
Xét n chẵn => 8n+1 lẻ, 6n+5 lẻ => (8n+1).(6n+5) lẻ => không chia hết cho 2.
Xét n = 0 => 8n+1=1 ; 6n+5=5 => (8n+1).(6n+5) = 5 => không chia hết cho 2.
Từ 3 điều trên suy ra (8n+1).(6n+5) không chia hết cho 2.
d = 1 nha
Đề bài thật ra kêu chúng ta đi tìm U7CLN của 2 số đó
Gọi \(\left(6n+1;8n+1\right)=d\), ta có :
\(6n+1\) chia hết cho \(d\Rightarrow8\left(6n+1\right)=48n+8\)chia hết cho \(d\)
\(8n+1\) chia hết cho \(d\Rightarrow6\left(8n+1\right)=48n+6\)chia hết cho \(d\)
\(\Rightarrow2\)chia hết cho \(d\Rightarrow d\in\left\{1;2\right\}\)
mà \(6n+1,8n+1\)không chia hết cho \(2\) nên \(d=1\)
Do đó hai số\(6n+1,8n+1\)là hai số nguyên tố cùng nhau
#Tham_khảo
Gọi d là ƯCLN(8n+5;6n+4)
ta có: 8n+5 chia hết cho d => 3.(8n+5) chia hết cho d => 24n+15 chia hết cho d(1)
6n+4 chia hết cho d => 4.(6n+4) chia hết cho d => 24n+16 chia hết cho d(2)
lấy (2)-(1)=>24n+16-(24n+15) chia hết cho d
=>1 chia hết cho d
=>d=1
Vậy ƯCLN(8n+5;6n+4) là 1 hay 8n+5/6n+4 là p/s tối giản
a, Ta có 8n - 59 = ( 2n -16 ) + ( 2n -16 ) + ( 2n - 16 ) + ( 2n - 16 ) + 5
2n - 16 luôn luôn chia hết cho 2n - 16
=> 4.(2n-16) chia hết cho 2n-16 <=> 5 chia hết cho 2n - 16
=> 2n - 16 thuộc Ư(5) = { 1;-1;5;-5 }
Tự làm nốt
b, tương tự
c, 6n - 46 = (2n-18) + (2n-18) + (2n-18) + 8
... Tiếp tục :))
a ,\(8n-59⋮2n-16\)
Mà \(2n-16⋮2n-16\)
\(\Rightarrow4\left(2n-16\right)⋮2n-16\)
\(\Rightarrow8n-64⋮2n-16\)
\(\Rightarrow\left(8n-59\right)-\left(8n-64\right)⋮2n-16\)
\(\Rightarrow8n-59-8n+64⋮2n-16\)
\(\Rightarrow5⋮2n-16\)
\(\Rightarrow2n-16\inƯ\left(5\right)\)
\(\Rightarrow2n-16\in\left\{\pm1;\pm5\right\}\)
\(\Rightarrow2n\in\left\{17;15;21;11\right\}\)
\(\Rightarrow\) KHÔNG CÓ SỐ NÀO THỎA MÃN CỦA 2n
\(\Rightarrow x\in\varnothing\)
Gọi \(ƯCLN\left(6n+4;8n+5\right)\)là \(d\left(d>0\right)\)
Theo bài ra ta có :
\(\hept{\begin{cases}6n+4⋮d\\8n+5⋮d\end{cases}\Rightarrow\hept{\begin{cases}4\left(6n+4\right)⋮d\\3\left(8n+5\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}24n+16⋮d\\24n+15⋮d\end{cases}}}\)
\(\Rightarrow\left(24n+16\right)-\left(24n+15\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
\(\RightarrowƯCLN\) \(\left(6n+4;8n+5\right)\) là 1 :
\(\Rightarrowđpcm\)
Hai số nguyên tố cùng nhau là 2 số chỉ có một ước chung là 1
Gọi d là ước chung của 6n+4 và 8n+5
Ta có: 6n+4 chia hết cho d và 8n+5 chia hết cho d.
Suy ra: 4(6n+4) -3(8n+5) chia hết cho d
24n+16 -24n-15 chia hết cho d
1 chia hết cho d
Do đó: d=1
Vậy 6n+4 và 8n+5 là 2 số nguyên tố cùng nhau.
Mong bạn hiểu để lần sau làm được. Chúc bạn học tốt.
A = \(\dfrac{8n+3}{6n+2}\) (n \(\in\) N)
Gọi ước chung lớn nhất của 8n + 3 và 6n + 2 là d
Ta có: \(\left\{{}\begin{matrix}8n+3⋮d\\6n+2⋮d\end{matrix}\right.\) ⇒ \(\left\{{}\begin{matrix}3.\left(8n+3\right)⋮d\\4.\left(6n+2\right)⋮d\end{matrix}\right.\) ⇒ \(\left\{{}\begin{matrix}24n+9⋮d\\24n+8⋮d\end{matrix}\right.\)
⇒ 24n + 9 - (24n + 8) ⋮ d
⇒ 24n + 9 - 24n - 8 ⋮ d ⇒ 1 ⋮ d ⇒ d = 1
Vậy A = \(\dfrac{8n+3}{6n+2}\) là phân số tối giản (đpcm)
Gọi d=ƯCLN(8n+3;6n+2)
=>\(\left\{{}\begin{matrix}8n+3⋮d\\6n+2⋮d\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}24n+9⋮d\\24n+8⋮d\end{matrix}\right.\)
=>\(24n+9-24n-8⋮d\)
=>\(1⋮d\)
=>d=1
=>\(\dfrac{8n+3}{6n+2}\) là phân số tối giản
6n + 8n
= ( 2 . 3 )n + (23)n
= 2n . 3n +23n
Giải :
6n + 8n
= ( 2 . 3 )n + ( 23 )n
= 2n . 3n + 23n
= 2n . ( 1 + 23 ) . 3n
= 2n . 9 + 3n
= 2n . 32 + 3n
= ( 2n + 3n-2 ) . 32
= ( 2n + 3n-2 ) . 9