Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{3x-2y}{5}\)=\(\dfrac{2z-5x}{3}\)=\(\dfrac{5y-3z}{2}\)
⇒\(\dfrac{15x-10y}{25}\)=\(\dfrac{6z-15x}{9}\)=\(\dfrac{10y-6z}{4}\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\dfrac{15x-10y}{25}\)=\(\dfrac{6z-15x}{9}\)=\(\dfrac{10y-6z}{4}\)=\(\dfrac{15x-10y+6z-15x+10y-6z}{25+9+4}\)=0
⇒3x-2y=2z-5x=5y-3z=0
* 3x-2y=0⇒3x=2y⇒\(\dfrac{x}{2}\)=\(\dfrac{y}{3}\)
* 2z-5x=0⇒2z=5x⇒\(\dfrac{z}{5}\)=\(\dfrac{x}{2}\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\dfrac{x}{2}\)=\(\dfrac{y}{3}\)=\(\dfrac{z}{5}\)=\(\dfrac{x+y+z}{2+3+5}\)=\(\dfrac{-50}{10}\)=-5
\(\dfrac{x}{2}\)=-5⇒x=-10
\(\dfrac{y}{3}\)=-5⇒y=-15
\(\dfrac{z}{5}\)=-5⇒z=-25
Vậy x=-10;y=-15;z=-25
Từ đẳng thức : \(\frac{3x-2y}{5}=\frac{2z-5x}{3}=\frac{5y-3z}{2}\)
=> \(\frac{15x-10y}{5^2}=\frac{6z-15x}{3^2}=\frac{10y-6z}{2^2}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{15x-10y}{5^2}=\frac{6z-15x}{3^2}=\frac{10y-6z}{2^2}=\frac{15x-10y+6z-15x+10y-6z}{5^2+3^2+2^2}=0\)
=> \(\hept{\begin{cases}15x=10y\\6z=15x\\10y=6z\end{cases}\Rightarrow\hept{\begin{cases}3x=2y\\2z=5x\\5y=3z\end{cases}\Rightarrow}\hept{\begin{cases}\frac{x}{2}=\frac{y}{3}\\\frac{z}{5}=\frac{x}{2}\\\frac{y}{3}=\frac{z}{5}\end{cases}\Rightarrow}\frac{x}{2}=\frac{y}{3}=\frac{z}{5}}\)
Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\Rightarrow\hept{\begin{cases}x=2k\\y=3k\\z=5k\end{cases}}\)
Khi đó : x2 + 176 = yz
<=> (2k)2 - 15k2 = -176
=> k2(4 - 15) = -176
=> k2 = 16
=> k2 = 42
=> k = \(\pm\)4
Nếu k = 4
=> \(\hept{\begin{cases}x=8\\y=12\\z=20\end{cases}}\)
Nếu k = - 4
=> \(\hept{\begin{cases}x=-8\\y=-12\\z=-20\end{cases}}\)
\(\frac{15x-10y}{5^2}\)=\(\frac{6z-15x}{3^2}\)=\(\frac{10y-6z}{2^2}\)
Áp dụng t/c dãy tỉ số bằng nhau ta có:
\(\frac{15x-10y}{5^2}\)=\(\frac{6z-15x}{3^2}\)=\(\frac{10y-6z}{2^2}\)=\(\frac{15x-10y+6z-15x+10y-6z}{5^2+3^2+2^2}\)=0
Suy ra 3x=2y \(\frac{x}{2}\)=\(\frac{y}{3}\)
2z=5x Suy ra \(\frac{z}{5}\)=\(\frac{x}{2}\)
5y=3z
Suy ra \(\frac{x}{2}\)=\(\frac{y}{3}\)=\(\frac{z}{5}\)
áp dụng t/c dãy tỉ số bằng nhau
\(\frac{x}{2}\)=\(\frac{y}{3}\)=\(\frac{z}{5}\)=\(\frac{x+y+z}{2+3+5}\)=\(\frac{100}{10}\)=10
x/2=10 suy ra x=20
y/3=10 suy ra y=30
z/3=10 suy ra z=50
k cho mình nha <3
\(\frac{3x-2y}{5}=\frac{2z-5x}{3}=\frac{5y-3z}{2}=\frac{15x-10y}{25}=\frac{6z-15x}{9}=\frac{10y-6z}{4}\)
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\frac{3x-2y}{5}=\frac{2z-5x}{3}=\frac{5y-3z}{2}=\frac{15x-10y}{25}=\frac{6z-15x}{9}=\frac{10y-6z}{4}\)
\(=\frac{15x-10y+6z-15x+10y-6z}{25+9+4}=0\)
=>3x-2y=2z-5x=5y-3z=0
- 3x-2y=0 => 3x=2y => x/2=y/3
- 2z-5x=0 => 2z=5x => z/5=x/2
=>\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\)
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=\frac{x+y+z}{2+3+5}=\frac{50}{10}=5\)
=>x=10;y=15;z=25
\(\frac{3x-2y}{5}=\frac{2z-5x}{3}=\frac{5y-3z}{2}\)
<=> \(\frac{15x-10y}{25}=\frac{6z-15x}{9}=\frac{10y-6z}{4}=\frac{15x-10y+6z-15x+10y-6z}{25+9+4}=\frac{0}{38}=0\)
<=> \(\hept{\begin{cases}15x-10y=0\\6z-15x=0\\10y-6z=0\end{cases}}\Leftrightarrow\hept{\begin{cases}3x=2y\\2z=5x\\5y=3z\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{x}{2}=\frac{y}{3}\\\frac{x}{2}=\frac{z}{5}\\\frac{y}{3}=\frac{z}{5}\end{cases}}\Leftrightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=\frac{x+y+z}{2+3+5}=\frac{80}{10}=8\)
=> x =2.8 = 16;
y = 3.8 = 24 ;
z = 5.8 = 40
Đặt \(\frac{3x-2y}{5}=\frac{2z-5x}{3}=\frac{5y-3z}{2}=t\).
\(\Leftrightarrow\hept{\begin{cases}3x-2y=5t\\-5x+2z=3t\\5y-3z=2t\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{5t+2y}{3}\\z=\frac{5y-2t}{3}\\-5.\frac{5t+2y}{3}+2.\frac{5y-2t}{3}=3t\end{cases}}\Rightarrow t=0\).
\(3x-2y=0\Leftrightarrow y=\frac{3}{2}x\)
\(2z-5x=0\Leftrightarrow z=\frac{5}{2}x\)
Suy ra \(x+y+z=x+\frac{3}{2}x+\frac{5}{2}x=5x=80\Leftrightarrow x=16\)
\(\Rightarrow\hept{\begin{cases}y=\frac{3}{2}.16=24\\z=\frac{5}{2}.16=40\end{cases}}\)