K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 9 2019

\(a,4x=5y\:\Rightarrow\frac{x}{5}=\frac{y}{4}\Rightarrow\frac{x}{15}=\frac{y}{12}\)

\(4y=6z\Rightarrow\frac{y}{6}=\frac{z}{4}\Rightarrow\frac{y}{12}=\frac{z}{8}\)

\(\Rightarrow\frac{x}{15}=\frac{y}{12}=\frac{z}{8}\)

\(\Rightarrow\frac{x}{15}=\frac{2y}{24}=\frac{3z}{24}\)

\(\Rightarrow\frac{x-2y+3z}{15-24+24}=\frac{x}{15}=\frac{y}{12}=\frac{z}{8}\)

\(\Rightarrow\frac{5}{15}=\frac{x}{15}=\frac{y}{12}=\frac{z}{8}\)

\(\Rightarrow\frac{1}{3}=\frac{x}{15}=\frac{y}{12}=\frac{z}{8}\)

\(\Rightarrow\hept{\begin{cases}x=\frac{1}{3}\cdot15=5\\y=\frac{1}{3}\cdot12=4\\z=\frac{1}{3}\cdot8=\frac{8}{3}\end{cases}}\)

20 tháng 9 2019

mọi người giúp mk câu b, c, d còn lại nha

5 tháng 10 2018

Mình làm một câu để bạn tham khảo, sau đó bạn áp dụng làm các bài còn lại nha ^^

Có gì không hiểu bạn ib nha ^^

1. \(2x=3y-2x\left(1\right)\)\(x+y=14\)

\(\left(1\right)\Leftrightarrow4x=3y\)

\(\Leftrightarrow\dfrac{x}{3}=\dfrac{y}{4}\)

Theo tính chất dãy tỉ số bằng nhau, có:

\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{x+y}{3+4}=\dfrac{14}{7}=2\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=2.3=6\\y=2.4=8\end{matrix}\right.\)

Bạn tự kết luận ^^

5 tháng 10 2018

sao nhieu bt the ban

2 tháng 11 2023

\(\dfrac{3x-2y}{5}\)=\(\dfrac{2z-5x}{3}\)=\(\dfrac{5y-3z}{2}\)

\(\dfrac{15x-10y}{25}\)=\(\dfrac{6z-15x}{9}\)=\(\dfrac{10y-6z}{4}\)

Áp dụng tính chất dãy tỉ số bằng nhau:

\(\dfrac{15x-10y}{25}\)=\(\dfrac{6z-15x}{9}\)=\(\dfrac{10y-6z}{4}\)=\(\dfrac{15x-10y+6z-15x+10y-6z}{25+9+4}\)=0

⇒3x-2y=2z-5x=5y-3z=0

* 3x-2y=0⇒3x=2y⇒\(\dfrac{x}{2}\)=\(\dfrac{y}{3}\) 

* 2z-5x=0⇒2z=5x⇒\(\dfrac{z}{5}\)=\(\dfrac{x}{2}\) 

Áp dụng tính chất dãy tỉ số bằng nhau:

\(\dfrac{x}{2}\)=\(\dfrac{y}{3}\)=\(\dfrac{z}{5}\)=\(\dfrac{x+y+z}{2+3+5}\)=\(\dfrac{-50}{10}\)=-5

\(\dfrac{x}{2}\)=-5⇒x=-10

\(\dfrac{y}{3}\)=-5⇒y=-15

\(\dfrac{z}{5}\)=-5⇒z=-25

Vậy x=-10;y=-15;z=-25

20 tháng 12 2018

a)Ta có: \(2x=3y;5y=7z\)và \(x-y-z=-27\)

\(\Rightarrow\frac{x}{3}=\frac{y}{2};\frac{y}{7}=\frac{z}{5}\)\(x-y-z=-27\)

\(\Rightarrow\frac{x}{21}=\frac{y}{14}=\frac{z}{10}\)và \(x-y-z=-27\)

Áp dụng tính chất của dãy tỉ số bằng nhau,ta có:

\(\frac{x}{21}=\frac{y}{14}=\frac{z}{10}=\frac{x-y-z}{21-14-10}=\frac{-27}{-3}=9\)

Ta có:\(\frac{x}{21}=9\Rightarrow x=9.21=189\)

          \(\frac{y}{14}=9\Rightarrow y=9.14=126\)

         \(\frac{z}{10}=9\Rightarrow z=9.10=90\)

Vậy:\(x=189;y=126\)\(z=90\)

20 tháng 12 2018

b) \(\frac{x}{4}=\frac{y}{5}=\frac{z}{6}\)\(x^2-2y^2+z^2=18\)

\(\Rightarrow\frac{x^2}{16}=\frac{2y^2}{50}=\frac{z^2}{36}\)\(x^2-2y^2+z^2=18\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{x^2}{16}=\frac{2y^2}{50}=\frac{z^2}{36}=\frac{x^2-2y^2+z^2}{16-50+36}=\frac{18}{2}=9\)

Ta có:\(\frac{x^2}{16}=9\Rightarrow x^2=144\Rightarrow\orbr{\begin{cases}x=12\\x=-12\end{cases}}\)

\(\frac{2y^2}{50}=9\Rightarrow2y^2=450\Rightarrow y^2=225\Rightarrow\orbr{\begin{cases}y=15\\y=-15\end{cases}}\)

\(\frac{z^2}{36}=9\Rightarrow z^2=324\Rightarrow\orbr{\begin{cases}z=18\\z=-18\end{cases}}\)

Vậy: \(x=12;y=15;z=18\)hoặc \(x=-12;y=-15;z=-18\)

14 tháng 8 2021

=)))))))))))))))))))))))))))))))))))))))))))))))))))))))

28 tháng 12 2019

Từ đẳng thức : \(\frac{3x-2y}{5}=\frac{2z-5x}{3}=\frac{5y-3z}{2}\)

=> \(\frac{15x-10y}{5^2}=\frac{6z-15x}{3^2}=\frac{10y-6z}{2^2}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có : 

\(\frac{15x-10y}{5^2}=\frac{6z-15x}{3^2}=\frac{10y-6z}{2^2}=\frac{15x-10y+6z-15x+10y-6z}{5^2+3^2+2^2}=0\)

=> \(\hept{\begin{cases}15x=10y\\6z=15x\\10y=6z\end{cases}\Rightarrow\hept{\begin{cases}3x=2y\\2z=5x\\5y=3z\end{cases}\Rightarrow}\hept{\begin{cases}\frac{x}{2}=\frac{y}{3}\\\frac{z}{5}=\frac{x}{2}\\\frac{y}{3}=\frac{z}{5}\end{cases}\Rightarrow}\frac{x}{2}=\frac{y}{3}=\frac{z}{5}}\)

Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\Rightarrow\hept{\begin{cases}x=2k\\y=3k\\z=5k\end{cases}}\)

Khi đó : x2 + 176 = yz 

<=> (2k)2 - 15k2 = -176

=> k2(4 - 15) = -176

=> k2 = 16

=> k2 = 42

=> k = \(\pm\)4

Nếu k = 4 

=> \(\hept{\begin{cases}x=8\\y=12\\z=20\end{cases}}\)

Nếu k = - 4

=> \(\hept{\begin{cases}x=-8\\y=-12\\z=-20\end{cases}}\)