Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{10^8+2}{10^8-1}=\frac{10^8-1+3}{10^8-1}=1+\frac{3}{10^8-1}\)
\(B=\frac{10^8}{10^8-3}=\frac{10^8-3+3}{10^8-3}=1+\frac{3}{10^8-3}\)
Nhận thầy 108 - 1 > 108 - 3
=> \(\frac{3}{10^8-1}< \frac{3}{10^8-3}\)
=> \(1+\frac{3}{10^8-1}< \frac{3}{10^8-3}+1\)
=> A < B
b) 17C = \(\frac{17\left(17^{203}+1\right)}{17^{204}+1}=\frac{17^{204}+1+16}{17^{204}+1}=1+\frac{16}{17^{204}+1}\)
17D = \(\frac{17\left(17^{202}+1\right)}{17^{203}+1}=\frac{17^{203}+1+16}{17^{203}+1}=1+\frac{16}{17^{203}+1}\)
Nhận thầy 17203 + 1 < 17204 + 1
=> \(\frac{16}{17^{203}+1}>\frac{16}{17^{204}+1}\)
=> \(\frac{16}{17^{203}+1}+1>\frac{16}{17^{204}+1}+1\Rightarrow17C>17D\Rightarrow C>D\)
\(A=\frac{10^{17}+5}{10^{17}-8}=\frac{10^{17}-8+13}{10^{17}-8}=\frac{10^{17}-8}{10^{17}-8}+\frac{13}{10^{17}-8}=1+\frac{13}{10^{17}-8}\)
\(B=\frac{10^{17}}{10^{17}-3}=\frac{10^{17}-3+13}{10^{17}-3}=\frac{10^{17}-3}{10^{17}-3}+\frac{13}{10^{17}-3}=1+\frac{13}{10^{17}-3}\)
Nhận xét: \(10^{17}-8<10^{17}-3\Rightarrow\frac{13}{10^{17}-8}>\frac{13}{10^{17}-3}\Rightarrow1+\frac{13}{10^{17}-8}>1+\frac{13}{10^{17}-3}\Rightarrow A>B\)
\(A=\frac{10^{17}+5}{10^{17}-8}=\frac{10^{17}-8+13}{10^{17}-8}=\frac{10^{17}-8}{10^{17}-8}+\frac{13}{10^{17}-8}=2+\frac{3}{10^{17}-8}\)
\(B=\frac{10^{17}}{10^{17}-3}=\frac{10^{17}-3+3}{10^{17}-3}=\frac{10^{17}-3}{10^{17}-3}+\frac{3}{10^{17}-3}=1+\frac{3}{10^{17}-3}\)
Do \(2+\frac{3}{10^{17}-8}>1+\frac{3}{10^{17}-3}\)n\(A>B\)
a) =-2,5+ -5,9+2/5
= (-2/5+2/5)+-5/9
= 0+-5/9
=-5/9
b) 17/13 - 4/13 + 11
= 1+11
= 12
c) 3/5 x (18/17+9/17 - 10/17)
= 3/5 x 1
= 3,5
Số số hạng của tổng:
(584 - 3) : 7 + 1 = 84 (số)
3 + 10 + 17 + ... + 584 = (584 + 3) . 84 : 2 = 24654
A = 3 + 10 + 17 +...+ 584
Dãy số trên là dãy số cách đều với khoảng cách là: 10 - 3 = 7
Số số hạng của dãy số trên là: (584 - 3) : 7 + 1 = 84
Tổng của dãy số trên là:
A = (584 + 3) x 84 : 2 = 24654
Vậy 3 + `10 + 17 +...+ 584 = 24654