Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
\(\left[\left(x-81\right)^3:5^3\right]-2^3=0\\ =>\left(x-81\right)^3:5^3=2^3\\ =>\left(x-81\right)^3=2^3.5^3=10^3\\ =>x-81=10\\ =>x=91\)
b)
\(3^{n+1}.3^{n+3}=18^{10}:6^{10}\\ =>3^{n+1+n+3}=3^{10}\\ =>2n+4=10\\ =>2n=6=>n=3\)
a) \(\left[\left(x+81\right)^3:5^3\right]-2^3=0\)
\(\Rightarrow\left(\dfrac{x+81}{5}\right)^3=2^3\)
\(\Rightarrow\dfrac{x-81}{5}=2\)
\(\Rightarrow x-81=10\)
\(\Rightarrow x=91\)
b) \(3^{n+1}\cdot3^{n+3}=18^{10}:6^{10}\)
\(\Rightarrow3^{2n+4}=3^{10}\)
\(\Rightarrow2n+4=10\)
\(\Rightarrow2n=6\)
\(\Rightarrow n=3\)
`3^1 .3^n + 5.3^(n+1)=16`
`3^(n+1) + 5.3^(n+1) =16`
`3^(n+1) . (1+5) =16`
`3^n . 3^1 = 8/3`
`3^n = 8/9`
`->` Không có n thỏa mãn.
Ta có: S = \(\dfrac{1}{3}+\dfrac{3}{3.7}+\dfrac{5}{3.7.11}+...+\dfrac{2n+1}{3.7.11...\left(4n+3\right)}\)
⇒ 2S = \(\dfrac{2}{3}+\dfrac{6}{3.7}+\dfrac{10}{3.7.11}+...+\dfrac{4n+2}{3.7.11...\left(4n+3\right)}\)
⇒ 2S + \(\dfrac{1}{3.7.11...\left(4n+3\right)}\) = \(\dfrac{2}{3}+\dfrac{6}{3.7}+\dfrac{10}{3.7.11}+...+\dfrac{4n+3}{3.7.11...\left(4n+3\right)}\)
Đến đây nó sẽ rút gọn liên tục và sau nhiều lần rút gọn ta có:
2S + \(\dfrac{1}{3.7.11...\left(4n+3\right)}\) = \(\dfrac{2}{3}+\dfrac{6}{3.7}+\dfrac{10}{3.7.11}+\dfrac{1}{3.7.11}\) = \(\dfrac{2}{3}+\dfrac{6}{3.7}+\dfrac{11}{3.7.11}\) = \(\dfrac{2}{3}+\dfrac{6}{3.7}+\dfrac{1}{3.7}\) = \(\dfrac{2}{3}+\dfrac{7}{3.7}=\dfrac{2}{3}+\dfrac{1}{3}=1\)
Suy ra 2S < 1 ⇒ S < \(\dfrac{1}{2}\)(đpcm)
\(\dfrac{-2}{3}\left(x-\dfrac{1}{4}\right)=\dfrac{1}{3}\left(2x-1\right)\)
\(\Leftrightarrow\dfrac{-2}{3}x+\dfrac{1}{6}=\dfrac{2}{3}x-\dfrac{1}{3}\)
\(\Leftrightarrow\dfrac{-2}{3}x-\dfrac{2}{3}x=\dfrac{-1}{3}-\dfrac{1}{6}\)
\(\Leftrightarrow\dfrac{-4}{3}x=\dfrac{-1}{2}\)
\(\Leftrightarrow x=\dfrac{3}{8}\)
Vậy \(x=\dfrac{3}{8}\)
\(\dfrac{1}{2}\) \(\times\) ( \(x\) - \(\dfrac{2}{3}\)) - \(\dfrac{1}{3}\) \(\times\) ( 2\(x\) - 3) = \(x\)
\(\dfrac{1}{2}\) \(\times\) \(\dfrac{3x-2}{3}\) - \(\dfrac{2x-3}{3}\) = \(x\)
\(\dfrac{3x-2}{6}\) - \(\dfrac{4x-6}{6}\) = \(\dfrac{6x}{6}\)
3\(x-2-4x\) + 6 = 6\(x\)
-\(x\) + 4 - 6\(x\) = 0
7\(x\) = 4
\(x\) = \(\dfrac{4}{7}\)
\(1-\left(x-1\right):3=\dfrac{2}{3}\)
\(\Rightarrow1-\left(x-1\right)=\dfrac{2}{3}.3\)
\(\Rightarrow1-\left(x-1\right)=2\)
\(\Rightarrow x-1=1-2\)
\(\Rightarrow x-1=\left(-1\right)\)
\(\Rightarrow x=\left(-1\right)+1\)
\(\Rightarrow x=0\)
Ta có:
\(A=\frac{1}{3}+\frac{1}{15}+\frac{1}{21}+...+\frac{1}{195}\)
\(\Rightarrow2A=\frac{2}{3}+\frac{2}{15}+\frac{2}{21}+...+\frac{2}{195}\)
\(=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{13.15}\)
\(=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{13}-\frac{1}{15}\)
\(=\frac{1}{1}-\frac{1}{15}\)
\(=\frac{14}{15}\)
\(\Rightarrow2A=\frac{14}{15}\Rightarrow A=\frac{14}{15}\div2=\frac{7}{15}\)
Vậy A = 7/15
ta có :
\(3^{-1}.3^n+5.3^{n-1}=162\Leftrightarrow3^{n-1}+5.3^{n-1}=162\)
\(\Leftrightarrow6.3^{n-1}=162\Leftrightarrow3^{n-1}=27\Leftrightarrow n-1=3\Leftrightarrow n=4\)