Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
6: =x^2-7xy+5xy-35y^2
=x(x-7y)+5y(x-7y)
=(x-7y)(x+5y)
7: =x^2-2xy-8xy+16y^2
=x(x-2y)-8y(x-2y)
=(x-2y)(x-8y)
8: =3x^2-6xy-4xy+8y^2
=3x(x-2y)-4y(x-2y)
=(x-2y)(3x-4y)
9: =4x^2+4xy+y^2-16y^2
=(2x+y)^2-16y^2
=(2x+y-4y)(2x+y+4y)
=(2x-3y)*(2x+5y)
10: =2(x^2+5xy+4y^2)
=2(x+y)(x+4y)
11: =5x(x+2y+y^2)
\(2x^2+10xy+14y^2+2x+2y+2=0\)
\(\Leftrightarrow\left(x^2+4y^2+1+2x+4xy+4y\right)+\left(x^2+6xy+9y^2\right)+\left(y^2-2y+1\right)=0\)
\(\Leftrightarrow\left(x+2y+1\right)^2+\left(x+3y\right)^2+\left(y-1\right)^2=0\)
Vì \(\hept{\begin{cases}\left(x+2y+1\right)^2\ge0;\forall x,y\\\left(x+3y\right)^2\ge0;\forall x,y\\\left(y-1\right)^2\ge0;\forall x,y\end{cases}}\)
\(\Rightarrow\left(x+2y+1\right)^2+\left(x+3y\right)^2+\left(y-1\right)^2\ge0;\forall x,y\)
Do đó :\(\left(x+2y+1\right)^2+\left(x+3y\right)^2+\left(y-1\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}\left(x+2y+1\right)^2=0\\\left(x+3y\right)^2=0\\\left(y-1\right)^2=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y=1\\x=-3\\y=1\end{cases}}\)
Vậy x=-3 và y=1
Kiến thức bổ sung
\(\left(a+b+c\right)^2=a^2+b^2+c^2+2ab+2bc+2ca\)
\(\Leftrightarrow4x^2+20xy+28y^2+4x+4y+4=0\)
\(\Leftrightarrow\left(4x^2+4x+20xy+25y^2+10y+1\right)+\left(3y^2-6y+3\right)=0\)
\(\Leftrightarrow\left(2x+5y+1\right)^2+3\left(y-1\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}2x+5y+1=0\\y-1=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-3\\y=1\end{cases}}\)
\(G=x^2-2xy+2y^2+2x-10y+17\\ \\ =x^2-2xy+y^2+y^2+2x-2y-8y+1+16\\ \\ =\left(x^2+y^2+1-2xy+2x-2y\right)+\left(y^2-8y+16\right)\\ \\ =\left(x-y+1\right)^2+\left(y-4\right)^2\)
Do \(\left(x-y+1\right)^2\ge0\forall x;y\)
\(\left(y-4\right)^2\ge0\forall y\)
\(\Rightarrow G=\left(x-y+1\right)^2+\left(y-4\right)^2\ge0\forall x;y\)
Dấu \("="\) xảy ra khi: \(\left\{{}\begin{matrix}\left(x-y+1\right)^2=0\\\left(y-4\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-y+1=0\\y-4=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=y-1\\y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=4\end{matrix}\right.\)
Vậy \(G_{\left(Min\right)}=0\) khi \(\left\{{}\begin{matrix}x=3\\y=4\end{matrix}\right.\)
\(H=x^2+2xy+y^2-2x-2y\\ =x^2+2xy+y^2-2x-2y+1-1\\ =\left(x^2+y^2+1+2xy-2x-2y\right)-1\\ \\ =\left(x+y-1\right)^2-1\)
Do \(\left(x+y-1\right)^2\ge0\forall x;y\)
\(\Rightarrow H=\left(x+y-1\right)^2-1\ge-1\forall x;y\)
Dấu \("="\) xảy ra khi:
\(\left(x+y-1\right)^2=0\\ \Leftrightarrow x+y-1=0\\ \Leftrightarrow x+y=1\)
Vậy \(H_{\left(Min\right)}=-1\) khi \(x+y=1\)
a: \(=\dfrac{2xy\left(2x^2y-4x+5\right)}{2xy}=2x^2y-4x+5\)
b: \(=\dfrac{x^2y\left(7x^2y-2y-5x^2y^3\right)}{3x^2y}=\dfrac{7}{3}x^2y-\dfrac{2}{3}y-\dfrac{5}{3}x^2y^3\)