K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 10 2017

2A = 2^18 - 2^17 - 2^15 - 2^14 - 2^13 - ... - 2^2 - 2

2A - A = A = ( 2^18 - 2^17 - 2^16 - 2^15 - 2^14 - 2^13 - ... - 2^2 - 2 ) - ( 2^17 - 2^16 - 2^15 - 2^14 - 2^13 - ... -2 - 1 )

A = 2^18 - 2^17 - 2^16 - 2^15 - 2^14 - 2^13 - ... - 2^2 - 2 - 2^17 + 2^16 + 2^15 +  2^14 + 2^13 + ... + 2 + 1

A = 2^18 - 2^17 - 2^17 + 1 

A = 2^18 - 2 . 2^17 + 1 

22 tháng 10 2017

A =2^17- 2^16-...-2-2^0

Ax2= 2^18-2^17-.....-2^2-2^1

Ax2-A=2^18-2^17-...-2^2-2^1-2^17+2^16+....+2^1+1

A=2^18-2^17-2^17+1

A=2^18-2^17X2+1

A=2^18-2^18+1

A=0+1

A=1

21 tháng 6 2016

Đặt A = 217 - 216 - 215 - ... - 22 - 2 - 1

=> 2A = 218 - 217 - 216 - ... - 23 - 22 - 2

=> 2A - A = (218 - 217 - 216 - ... - 23 - 22 - 2) -(217 - 216 - 215 - ... - 22 - 2 - 1)

=> A = 218 - 1

21 tháng 6 2016

Đặt \(A=2^{17}-2^{16}-2^{15}-...-2^2-2-1\)

\(\Rightarrow2A=2^{18}-2^{17}-2^{16}-...-2^3-2^2-2=2^{17}-2^{16}-...-2^2-2=A+1\)

\(\Rightarrow A=1\)

21 tháng 6 2016

Đặt A = 217 - 216 - 215 - ... - 2- 2 - 1

=> 2A = 218 - 217 - 216 - ... - 2- 2- 2

=> 2A - A = (218 - 217 - 216 - ... - 2- 2- 2) -(217 - 216 - 215 - ... - 2- 2 - 1)

=> A = 218 - 1

1 tháng 11 2017

\(1,x^2+2xy+x+2y\)

\(=\left(x^2+2xy\right)+\left(x+2y\right)\)

\(=x\left(x+2y\right)+\left(x+2y\right)\)

\(=\left(x+2y\right)\left(x+1\right)\)

\(2,x^2-10x+25\)

\(=x^2-2.x.5+5^2\)

\(=\left(x-5\right)^2\)

Đợi mk chút ,mk có việc bận ,tối mk làm tiếp nha bn

1 tháng 11 2017

\(3,x^3+3x^2+3x+1\)

\(=\left(x^3+1\right)+\left(3x^2+3x\right)\)

\(=\left(x+1\right)\left(x^2-x+1\right)+3x\left(x+1\right)\)

\(=\left(x+1\right)\left(x^2-x+1+3x\right)\)

\(=\left(x+1\right)\left(x^2+2x+1\right)\)

\(=\left(x+1\right)\left(x+1\right)^2\)

\(=\left(x+1\right)^3\)

\(4,x^3-8\)

\(=x^3-2^3\)

\(=\left(x-2\right)\left(x^2+2x+4\right)\)

\(5,x^3+27\)

\(=x^3+3^3\)

\(=\left(x+3\right)\left(x^2-3x+9\right)\)

\(6,x^3-\dfrac{1}{8}\)

\(=x^3-\left(\dfrac{1}{2}\right)^3\)

\(=\left(x-\dfrac{1}{2}\right)\left(x^2+\dfrac{1}{2}x+\dfrac{1}{4}\right)\)

\(7,x^3-x+y^3-y\)

\(=\left(x^3+y^3\right)-\left(x+y\right)\)

\(=\left(x+y\right)\left(x^2-xy+y^2\right)-\left(x+y\right)\)

\(=\left(x+y\right)\left(x^2-xy+y^2-1\right)\)

\(8,4x^2-1\)

\(=\left(2x\right)^2-1^2\)

\(=\left(2x-1\right)\left(2x+1\right)\)

\(9,49x^2-9\)

\(=\left(7x\right)^2-3^2\)

\(=\left(7x-3\right)\left(7x+3\right)\)

5 tháng 9 2020

Áp dụng : (A + B)3 = A3 + 3A2B + 3AB2 + B3

11) \(\left(x^2+\frac{3}{xy}\right)^3=\left(x^2\right)^3+3\cdot\left(x^2\right)^2\cdot\frac{3}{xy}+3\cdot x^2\cdot\left(\frac{3}{xy}\right)^2+\left(\frac{3}{xy}\right)^3\)

\(=x^6+3\cdot x^4\cdot\frac{3}{xy}+3\cdot x^2\cdot\frac{9}{x^2y^2}+\frac{27}{x^3y^3}\)

\(=x^6+\frac{9x^4}{xy}+\frac{27\cdot x^2}{x^2y^2}+\frac{27}{x^3y^3}\)

\(=x^6+\frac{9x^3}{y}+\frac{27}{y^2}+\frac{27}{x^3y^3}\)

12) \(\left(x^2+\frac{2}{x}\right)^3=\left(x^2\right)^3+3\cdot\left(x^2\right)^2\cdot\frac{2}{x}+3\cdot x^2\cdot\left(\frac{2}{x}\right)^2+\left(\frac{2}{x}\right)^3\)

\(=x^6+3\cdot x^4\cdot\frac{2}{x}+3\cdot x^2\cdot\frac{4}{x^2}+\frac{8}{x^3}\)

\(=x^6+\frac{6\cdot x^4}{x}+\frac{12\cdot x^2}{x^2}+\frac{8}{x^3}\)

\(=x^6+6x^3+12+8x^3\)

13) \(\left(3y+\frac{x}{2}\right)^3=\left(3y\right)^3+3\cdot3y^2\cdot\frac{x}{2}+3\cdot3y+\left(\frac{x}{2}\right)^2+\left(\frac{x}{2}\right)^3\)

\(=27y^3+\frac{9y^2\cdot x}{2}+9y+\frac{x^2}{4}+\frac{x^3}{8}\)

14) \(\left(1\frac{1}{2}xy+1\right)^3=\left(\frac{3}{2}xy+1\right)^3=\left(\frac{3}{2}xy\right)^3+3\cdot\left(\frac{3}{2}xy\right)^2\cdot1+3\cdot\frac{3}{2}xy\cdot1^2+1^3\)

\(=\frac{27}{8}x^3y^3+3\cdot\frac{9}{4}x^2y^2+\frac{9}{2}xy+1\)

\(=\frac{27}{8}x^3y^3+\frac{27}{4}x^2y^2+\frac{9}{2}xy+1\)

15) \(\left(\frac{x^2}{2}+\frac{2}{y}\right)^3=\left(\frac{x^2}{2}\right)^3+3\cdot\left(\frac{x^2}{2}\right)^2\cdot\frac{2}{y}+3\cdot\frac{x^2}{2}\cdot\left(\frac{2}{y}\right)^2+\left(\frac{2}{y}\right)^3\)

\(=\frac{x^6}{8}+3\cdot\frac{x^4}{4}\cdot\frac{2}{y}+3\cdot\frac{x^2}{2}\cdot\frac{4}{y^2}+\frac{8}{y^3}\)

\(=\frac{x^6}{8}+\frac{3x^4}{2y}+\frac{6x^2}{y^2}+\frac{8}{y^3}\)

Còn 5 bài cuối áp dụng tương tự như thế :)

23 tháng 6 2015

đặt A=217-216-215-...-22-2-1

=>2A=218-217-216-...-23-22-2

=>2A-A=218-217-216-...-23-22-2-(217-216-215-...-22-2-1)

=>A=218-217-216-...-23-22-2+217+216+215+...+22+2+1

=218+1

vậy 217-216-215-...-22-2-1=218+1

28 tháng 7 2021

\(\left(20^2+18^2+16^2+......+4^2+2^2\right)-\left(19^2+17^2+.....+3^2+1^2\right)\)

\(=20^2-19^2+18^2-17^2+......+2^2-1^2\)

\(=\left(20-19\right)\left(20+19\right)+\left(18-17\right)\left(18+17\right)+.......+\left(2-1\right)\left(2+1\right)\)

\(=39+35+....+7+3\)

\(=\left(39+3\right)\left[\left(39-3\right):4+1\right]:2=210\)