\(^7\)]\(^2\)= x (-2001)\(^x\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(a,|x|=2001\)

\(\Rightarrow x=-2001;x=2001\)

\(c,3-\left(x-2\right)=-2x+7\)

\(\Rightarrow3-x+2=-2x+7\)

\(\Rightarrow5-x=-2x+7\)

\(\Rightarrow x=2\)

\(d,\left(\frac{3}{4}\right)+\frac{2}{5}x=\frac{29}{30}\)

\(\Rightarrow\frac{2}{5}x=\frac{13}{60}\)

\(\Rightarrow x=\frac{13}{24}\)

\(e,\left(\frac{3}{7}\right)^5.x=\left(\frac{3}{7}\right)^7\)

\(\Rightarrow x=\left(\frac{3}{7}\right)^2\)

Câu 2: 

\(\dfrac{x+2000}{x-2000}=\dfrac{y+2001}{y-2001}\)

\(\Leftrightarrow\left(x+2000\right)\left(y-2001\right)=\left(x-2000\right)\left(y+2001\right)\)

\(\Leftrightarrow xy-2001x+2000y-4002000=xy+2001x-2000y-4002000\)

=>-2001x+2000y=2001x-2000y

=>-4002x=-4000y

=>2001x=2000y

hay x/y=2000/2001

4 tháng 9 2019

Giải giúp mình nhé

Mình đang cần gấp

4 tháng 9 2019

Bài 1

\(a,\left|x\right|=-\left|-\frac{5}{7}\right|=>x\in\varnothing\)

\(b,\left|x+4,3\right|-\left|-2,8\right|=0\)

\(=>\left|x+4,3\right|-2,8=0\)

\(=>\left|x+4,3\right|=0+2,8=2,8\)

\(=>x+4,3=\pm2,8\)

\(=>\hept{\begin{cases}x+4,3=2,8\\x+4,3=-2,8\end{cases}=>\hept{\begin{cases}x=-1,5\\x=-7,1\end{cases}}}\)

\(c,\left|x\right|+x=\frac{2}{3}\)

\(=>\hept{\begin{cases}x+x=\frac{2}{3}\\-x+x=\frac{2}{3}\end{cases}}=>\hept{\begin{cases}x=\frac{1}{3}\\x=-\frac{1}{3}\end{cases}}\)

9 tháng 8 2018

co ghi dau ma biet

9 tháng 8 2018

mk ko chép lại đề nhé bn

b, 

=>\(\left|x-\frac{1}{3}\right|+\frac{4}{5}=\left|-\frac{14}{5}\right|\)

=>\(\left|x-\frac{1}{3}\right|+\frac{4}{5}=\frac{14}{5}\) \(\Rightarrow\left|x-\frac{1}{3}\right|=2\)

\(\Rightarrow\orbr{\begin{cases}x-\frac{1}{3}=-2\\x-\frac{1}{3}=2\end{cases}\Rightarrow\orbr{\begin{cases}x=-\frac{5}{3}\\x=\frac{7}{3}\end{cases}}}\)

c,\(\Rightarrow\frac{x-1}{2013}+\frac{x-2}{2012}-\frac{x-3}{2011}-\frac{x-4}{2010}=0\)

=> \(\frac{x-1}{2013}-1+\frac{x-2}{2012}-1-\left(\frac{x-3}{2011}-1+\frac{x-4}{2010}-1\right)=0\)

=>\(\frac{x-2014}{2013}+\frac{x-2014}{2012}-\frac{x-2014}{2011}-\frac{x-2014}{2010}=0\)

=.\(\left(x-2014\right)\left(\frac{1}{2013}+\frac{1}{2012}-\frac{1}{2011}-\frac{1}{2010}\right)=0\)

Do \(\frac{1}{2013}+\frac{1}{2012}-\frac{1}{2011}-\frac{1}{2010}\ne0\)=> x-2014=0

=> x=2014

d,\(\left(x-7\right)^{x-1}-\left(x-7\right)^{x+11}=0\)

=>\(\left(x-7\right)^{x-1}.\left[1-\left(x-7\right)^{x+12}\right]=0\)

=> \(\orbr{\begin{cases}\left(x-7\right)^{x-1}=0\\1-\left(x-7\right)^{x+12}=0\end{cases}}\)

=> \(\orbr{\begin{cases}x-7=0\\\left(x-7\right)^{x+12}=0\end{cases}}\)

=>x=7 hoặc x-7=1 hoặc x+12=0

=> x=7 hoặc x=8 hoặc x=-12

Vậy x=7, x=8, x=-12

k,3x+x2=0

=> x(3+x)=0

=>\(\orbr{\begin{cases}x=0\\3+x=0\end{cases}}\)

=>\(\orbr{\begin{cases}x=0\\x=-3\end{cases}}\)

m, x2-2x-3(x-2)=0

=> x(x-2)-3(x-2)=0

=> (x-3)(x-2)=0

=>\(\orbr{\begin{cases}x-3=0\\x-2=0\end{cases}}\)

=> \(\orbr{\begin{cases}x=3\\x=2\end{cases}}\)

*****Chúc bạn học giỏi*****

13 tháng 6 2018

Ta có : 

\(\frac{x+4}{2014}+\frac{x+3}{2015}=\frac{x+8}{2010}+\frac{x+7}{2011}\)

\(\Leftrightarrow\)\(\left(\frac{x+4}{2014}+1\right)+\left(\frac{x+3}{2015}+1\right)=\left(\frac{x+8}{2010}+1\right)+\left(\frac{x+7}{2011}+1\right)\)

\(\Leftrightarrow\)\(\frac{x+4+2014}{2014}+\frac{x+3+2015}{2015}=\frac{x+8+2010}{2010}+\frac{x+7+2011}{2011}\)

\(\Leftrightarrow\)\(\frac{x+2018}{2014}+\frac{x+2018}{2015}=\frac{x+2018}{2010}+\frac{x+2018}{2011}\)

\(\Leftrightarrow\)\(\frac{x+2018}{2014}+\frac{x+2018}{2015}-\frac{x+2018}{2010}-\frac{x+2018}{2011}=0\)

\(\Leftrightarrow\)\(\left(x-2018\right)\left(\frac{1}{2014}+\frac{1}{2015}-\frac{1}{2010}-\frac{1}{2011}\right)=0\)

Vì \(\frac{1}{2014}+\frac{1}{2015}-\frac{1}{2010}-\frac{1}{2011}\ne0\)

Nên \(x-2018=0\)

\(\Leftrightarrow\)\(x=2018\)

Vậy \(x=2018\)

Chúc bạn học tốt ~ 

13 tháng 6 2018

Ta có: \(\frac{x+4}{2014}+\frac{x+3}{2015}=\frac{x+7}{2011}+\frac{x+8}{2010}\)

\(\Rightarrow\left(\frac{x+4}{2014}+1\right)+\left(\frac{x+3}{2015}+1\right)=\left(\frac{x+7}{2011}+1\right)+\left(\frac{x+8}{2010}+1\right)\)

\(\Rightarrow\frac{x+2018}{2014}+\frac{x+2018}{2013}=\frac{x+2018}{2011}+\frac{x+2018}{2010}\)

\(\Rightarrow\frac{x+2018}{2014}+\frac{x+2018}{2013}-\frac{x+2018}{2011}-\frac{x+2018}{2010}=0\)

\(\Rightarrow\left(x+2018\right)\left(\frac{1}{2014}+\frac{1}{2015}-\frac{1}{2011}-\frac{1}{2010}\right)=0\)

\(\Rightarrow x+2018=0\Rightarrow x=-2018\)

Chúc bn hc tốt! ^_^

5 tháng 10 2018

Giải bài khó nhất =)

\(\frac{x+4}{2000}+\frac{x+3}{2001}=\frac{x+2}{2002}+\frac{x+1}{2003}\)

\(\Leftrightarrow\left(\frac{x+4}{2000}+1\right)+\left(\frac{x+3}{2001}+1\right)=\left(\frac{x+2}{2002}+1\right)+\left(\frac{x+1}{2003}+1\right)\)

\(\Leftrightarrow\frac{x+2004}{2000}+\frac{x+2004}{2001}=\frac{x+2004}{2002}+\frac{x+2004}{2003}\)

\(\Leftrightarrow\frac{x+2004}{2000}+\frac{x+2004}{2001}-\frac{x+2004}{2002}-\frac{x+2004}{2003}=0\)

\(\Leftrightarrow\left(x+2004\right)\left(\frac{1}{2000}+\frac{1}{2001}+\frac{1}{2002}+\frac{1}{2003}\right)=0\)

Do \(\frac{1}{2000}+\frac{1}{2001}+\frac{1}{2002}+\frac{1}{2003}\ne0\) nên \(x+2004=0\Leftrightarrow x=-2004\)

AH
Akai Haruma
Giáo viên
28 tháng 2 2020

Lời giải:

$\frac{x-1}{2011}+\frac{x-2}{2010}-\frac{x-3}{2009}=\frac{x-4}{2008}$

$\Leftrightarrow \frac{x-1}{2011}+\frac{x-2}{2010}=\frac{x-3}{2009}+\frac{x-4}{2008}$

$\Leftrightarrow \frac{x-1}{2011}-1+\frac{x-2}{2010}-1=\frac{x-3}{2009}-1+\frac{x-4}{2008}-1$

$\Leftrightarrow \frac{x-2012}{2011}+\frac{x-2012}{2010}=\frac{x-2012}{2009}+\frac{x-2012}{2008}$

$\Leftrightarrow (x-2012)\left(\frac{1}{2011}+\frac{1}{2010}-\frac{1}{2009}-\frac{1}{2008}\right)=0$

Dễ thấy $\frac{1}{2011}+\frac{1}{2010}-\frac{1}{2009}-\frac{1}{2008}< 0$

Do đó $x-2012=0\Rightarrow x=2012$

28 tháng 2 2020

\(\frac{x-1}{2011}+\frac{x-2}{2010}-\frac{x-3}{2009}=\frac{x-4}{2008}.\)

\(\Rightarrow\frac{x-1}{2011}+\frac{x-2}{2010}=\frac{x-4}{2008}+\frac{x-3}{2009}\)

\(\Rightarrow\left(\frac{x-1}{2011}-1\right)+\left(\frac{x-2}{2010}-1\right)=\left(\frac{x-4}{2008}-1\right)+\left(\frac{x-3}{2009}-1\right)\)

\(\Rightarrow\left(\frac{x-1-2011}{2011}\right)+\left(\frac{x-2-2010}{2010}\right)=\left(\frac{x-4-2008}{2008}\right)+\left(\frac{x-3-2009}{2009}\right)\)

\(\Rightarrow\frac{x-2012}{2011}+\frac{x-2012}{2010}=\frac{x-2012}{2008}+\frac{x-2012}{2009}\)

\(\Rightarrow\frac{x-2012}{2011}+\frac{x-2012}{2010}-\frac{x-2012}{2008}-\frac{x-2012}{2009}=0\)

\(\Rightarrow\left(x-2012\right).\left(\frac{1}{2011}+\frac{1}{2010}-\frac{1}{2008}-\frac{1}{2009}\right)=0\)

\(\frac{1}{2011}+\frac{1}{2010}-\frac{1}{2008}-\frac{1}{2009}\ne0.\)

\(\Rightarrow x-2012=0\)

\(\Rightarrow x=0+2012\)

\(\Rightarrow x=2012\)

Vậy \(x=2012.\)

Chúc bạn học tốt!