Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Rightarrow\frac{x-1}{2011}+\frac{x-2}{2010}+\frac{x-3}{2009}=0\)
\(\Rightarrow\frac{x-1}{2011}-1+\frac{x-2}{2010}-1+\frac{x-3}{2009}-1+\frac{x-4}{2008}-1=0\)
\(\Rightarrow\left(\frac{x-1}{2011}-1\right)+\left(\frac{x-2}{2010}-1\right)+\left(\frac{x-3}{2009}-1\right)+\left(\frac{x-4}{2008}-1\right)=0\)
\(\Rightarrow\frac{x-2012}{2011}+\frac{x-2012}{2010}+\frac{x-2012}{2009}+\frac{x-2012}{2008}=0\)
\(\Rightarrow\left(x-2012\right)\cdot\left(\frac{1}{2011}+\frac{1}{2010}+\frac{1}{2009}+\frac{1}{2008}\right)\)
Vì \(\frac{1}{2011}< \frac{1}{2009}\) và \(\frac{1}{2010}< \frac{1}{2008}\) nên \(\frac{1}{2011}+\frac{1}{2010}+\frac{1}{2009}+\frac{1}{2008}\ne0\)
\(\rightarrow x-2012=0\)
\(\rightarrow x=2012\)
Vậy x = 2012.
\(\frac{x+3}{2007}-\frac{x+3}{2008}=\frac{x+3}{2010}-\frac{x+3}{2009}\)
\(\Leftrightarrow\)\(\frac{x+3}{2007}-\frac{x+3}{2008}-\frac{x+3}{2010}+\frac{x+3}{2009}=0\)
\(\Leftrightarrow\)\(\left(x+3\right)\left(\frac{1}{2007}-\frac{1}{2008}-\frac{1}{2010}+\frac{1}{2009}\right)=0\)
Vì \(\frac{1}{2007}-\frac{1}{2008}-\frac{1}{2010}+\frac{1}{2009}\ne0\)
Nên \(x+3=0\)
\(\Leftrightarrow\)\(x=-3\)
Vậy \(x=-3\)
Chúc bạn học tốt ~
1) \(\frac{x+1}{15}+\frac{x+2}{14}=\frac{x+3}{13}+\frac{x+4}{12}\)
\(\Leftrightarrow\frac{x+16}{15}+\frac{x+16}{14}-\frac{x+16}{13}-\frac{x+16}{12}=0\)
\(\Leftrightarrow\left(x+16\right)\left(\frac{1}{15}+\frac{1}{14}-\frac{1}{13}-\frac{1}{12}\right)=0\)
\(\Leftrightarrow x=-16\)
2)3)4) tương tự
Gợi ý : 2) cộng 3 vào cả hai vế
3)4) cộng 2 vào cả hai vế
5) \(\frac{x+1}{20}+\frac{x+2}{19}+\frac{x+3}{18}=-3\)
\(\Leftrightarrow\frac{x+21}{20}+\frac{x+21}{19}+\frac{x+21}{18}=0\)
\(\Leftrightarrow\left(x+21\right)\left(\frac{1}{20}+\frac{1}{19}+\frac{1}{18}\right)=0\)
\(\Leftrightarrow x=-21\)
6) sửa VT = 4 rồi tương tự câu 5)
\(\frac{x-1}{2011}+\frac{x-2}{2012}=\frac{x-3}{2013}+\frac{x-4}{2014}\)
\(\frac{x-1}{2011}+1+\frac{x-2}{2012}+1=\frac{x-3}{2013}+1+\frac{x-4}{2014}+1\)
\(\Rightarrow\frac{x+2010}{2011}+\frac{x+2010}{2012}=\frac{x+2010}{2013}+\frac{x+2010}{2014}\)
\(\Rightarrow\left(x+2010\right)\left(\frac{1}{2011}+\frac{1}{2012}-\frac{1}{2013}-\frac{1}{2014}\right)=0\)
\(\frac{1}{2011}+\frac{1}{2012}-\frac{1}{2013}-\frac{1}{2014}>0\)
\(\Leftrightarrow x+2010=0\Rightarrow x=-2010\)
Bạn tiếp tục áp dụng phương pháp này vào bài 2 nha nhưng bài b bạn sẽ trừ 1 ở mỗi thức
\(a)\) \(\frac{x-1}{2011}+\frac{x-2}{2012}=\frac{x-3}{2013}+\frac{x-4}{2014}\)
\(\Leftrightarrow\)\(\left(\frac{x-1}{2011}+1\right)+\left(\frac{x-2}{2012}+1\right)=\left(\frac{x-3}{2013}+1\right)+\left(\frac{x-4}{2014}+1\right)\)
\(\Leftrightarrow\)\(\frac{x-1+2011}{2011}+\frac{x-2+2012}{2012}=\frac{x-3+2013}{2013}+\frac{x-4+2014}{2014}\)
\(\Leftrightarrow\)\(\frac{x-2010}{2011}+\frac{x+2010}{2012}=\frac{x+2010}{2013}+\frac{x+2010}{2014}\)
\(\Leftrightarrow\)\(\frac{x-2010}{2011}+\frac{x+2010}{2012}-\frac{x+2010}{2013}-\frac{x+2010}{2014}=0\)
\(\Leftrightarrow\)\(\left(x-2010\right)\left(\frac{1}{2011}+\frac{1}{2012}-\frac{1}{2013}-\frac{1}{2014}\right)=0\)
Vì \(\frac{1}{2011}+\frac{1}{2012}-\frac{1}{2013}-\frac{1}{2014}\ne0\)
Nên \(x-2010=0\)
\(\Rightarrow\)\(x=2010\)
Vậy \(x=2010\)
Chúc bạn học tốt ~
\(|x-\frac{1}{3}|=|\left(-3.2\right)+\frac{2}{5}|\)
\(\Rightarrow|x-\frac{1}{3}|=|-3.2+0.4|\)
\(\Rightarrow|x-\frac{1}{3}|=|-2.8|\)
\(\Rightarrow|x-\frac{1}{3}|=2.8\)
\(\Rightarrow\orbr{\begin{cases}x-\frac{1}{3}=2.8\\x-\frac{1}{3}=-2.8\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x=\frac{43}{15}\\x=-\frac{41}{15}\end{cases}}\)
tính lại kết quả nhé
Ta có : \(\frac{x+6}{2010}+\frac{x+5}{2009}=\frac{x+4}{2008}+\frac{x+3}{2007}\)
\(\Leftrightarrow\frac{x+6}{2010}-1+\frac{x+5}{2009}-1=\frac{x+4}{2008}-1+\frac{x+3}{2007}-1\)
\(\Leftrightarrow\frac{x-2004}{2010}+\frac{x-2004}{2009}=\frac{x-2004}{2008}+\frac{x-2004}{2007}\)
\(\Leftrightarrow\frac{x-2004}{2010}+\frac{x-2004}{2009}-\frac{x-2004}{2008}-\frac{x-2004}{2007}=0\)
\(\Leftrightarrow\left(x-2004\right)\left(\frac{1}{2010}+\frac{1}{2009}-\frac{1}{2008}-\frac{1}{2007}\right)=0\)
Mà : \(\frac{1}{2010}+\frac{1}{2009}-\frac{1}{2008}-\frac{1}{2007}\ne0\)
Nên : x - 2004 = 0
=> x = 2004
\(a)\) \(\frac{x+1}{99}+\frac{x+2}{98}+\frac{x+3}{97}+\frac{x+4}{96}=-4\)
\(\Leftrightarrow\)\(\left(\frac{x+1}{99}+1\right)+\left(\frac{x+2}{98}+1\right)+\left(\frac{x+3}{97}+1\right)+\left(\frac{x+4}{96}+1\right)=-4+4\)
\(\Leftrightarrow\)\(\frac{x+1+99}{99}+\frac{x+2+98}{98}+\frac{x+3+97}{97}+\frac{x+4+96}{96}=0\)
\(\Leftrightarrow\)\(\frac{x+100}{99}+\frac{x+100}{98}+\frac{x+100}{97}+\frac{x+100}{96}=0\)
\(\Leftrightarrow\)\(\left(x+100\right)\left(\frac{1}{99}+\frac{1}{98}+\frac{1}{97}+\frac{1}{96}\right)=0\)
Vì \(\frac{1}{99}+\frac{1}{98}+\frac{1}{97}+\frac{1}{96}\ne0\)
Nên \(x+100=0\)
\(\Rightarrow\)\(x=-100\)
Vậy \(x=-100\)
Chúc bạn học tốt ~
\(b)\) \(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{x\left(x+1\right)}=\frac{2008}{2009}\)
\(\Leftrightarrow\)\(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2008}{2009}\)
\(\Leftrightarrow\)\(1-\frac{1}{x+1}=\frac{2008}{2009}\)
\(\Leftrightarrow\)\(\frac{1}{x+1}=1-\frac{2008}{2009}\)
\(\Leftrightarrow\)\(\frac{1}{x+1}=\frac{1}{2009}\)
\(\Leftrightarrow\)\(x+1=2009\)
\(\Leftrightarrow\)\(x=2009-1\)
\(\Leftrightarrow\)\(x=2008\)
Vậy \(x=2008\)
Chúc bạn học tốt ~
Lời giải:
$\frac{x-1}{2011}+\frac{x-2}{2010}-\frac{x-3}{2009}=\frac{x-4}{2008}$
$\Leftrightarrow \frac{x-1}{2011}+\frac{x-2}{2010}=\frac{x-3}{2009}+\frac{x-4}{2008}$
$\Leftrightarrow \frac{x-1}{2011}-1+\frac{x-2}{2010}-1=\frac{x-3}{2009}-1+\frac{x-4}{2008}-1$
$\Leftrightarrow \frac{x-2012}{2011}+\frac{x-2012}{2010}=\frac{x-2012}{2009}+\frac{x-2012}{2008}$
$\Leftrightarrow (x-2012)\left(\frac{1}{2011}+\frac{1}{2010}-\frac{1}{2009}-\frac{1}{2008}\right)=0$
Dễ thấy $\frac{1}{2011}+\frac{1}{2010}-\frac{1}{2009}-\frac{1}{2008}< 0$
Do đó $x-2012=0\Rightarrow x=2012$
\(\frac{x-1}{2011}+\frac{x-2}{2010}-\frac{x-3}{2009}=\frac{x-4}{2008}.\)
\(\Rightarrow\frac{x-1}{2011}+\frac{x-2}{2010}=\frac{x-4}{2008}+\frac{x-3}{2009}\)
\(\Rightarrow\left(\frac{x-1}{2011}-1\right)+\left(\frac{x-2}{2010}-1\right)=\left(\frac{x-4}{2008}-1\right)+\left(\frac{x-3}{2009}-1\right)\)
\(\Rightarrow\left(\frac{x-1-2011}{2011}\right)+\left(\frac{x-2-2010}{2010}\right)=\left(\frac{x-4-2008}{2008}\right)+\left(\frac{x-3-2009}{2009}\right)\)
\(\Rightarrow\frac{x-2012}{2011}+\frac{x-2012}{2010}=\frac{x-2012}{2008}+\frac{x-2012}{2009}\)
\(\Rightarrow\frac{x-2012}{2011}+\frac{x-2012}{2010}-\frac{x-2012}{2008}-\frac{x-2012}{2009}=0\)
\(\Rightarrow\left(x-2012\right).\left(\frac{1}{2011}+\frac{1}{2010}-\frac{1}{2008}-\frac{1}{2009}\right)=0\)
Vì \(\frac{1}{2011}+\frac{1}{2010}-\frac{1}{2008}-\frac{1}{2009}\ne0.\)
\(\Rightarrow x-2012=0\)
\(\Rightarrow x=0+2012\)
\(\Rightarrow x=2012\)
Vậy \(x=2012.\)
Chúc bạn học tốt!