Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(C=\frac{\frac{1}{2008}-\frac{1}{2009}-\frac{1}{2010}}{\frac{5}{2008}-\frac{5}{2009}-\frac{5}{2010}}+\frac{\frac{2}{2007}-\frac{2}{2008}-\frac{2}{2009}}{\frac{3}{2007}-\frac{3}{2008}-\frac{3}{2009}}\)
\(=\frac{\frac{1}{2008}-\frac{1}{2009}-\frac{1}{2010}}{5.\left(\frac{1}{2008}-\frac{1}{2009}-\frac{1}{2010}\right)}+\frac{2.\left(\frac{1}{2007}-\frac{1}{2008}-\frac{1}{2009}\right)}{3.\left(\frac{1}{2007}-\frac{1}{2008}-\frac{1}{2009}\right)}\)
\(=\frac{1}{5}+\frac{2}{3}\)
\(=\frac{13}{15}\)
Ta có :
\(B=\frac{2008}{1}+\frac{2007}{2}+\frac{2006}{3}+...+\frac{2}{2007}+\frac{1}{2008}\) ( thiếu đề nhé )
\(B=\left(2008-1-1-...-1\right)+\left(\frac{2007}{2}+1\right)+\left(\frac{2006}{3}+1\right)+...+\left(\frac{2}{2007}+1\right)+\left(\frac{1}{2008}+1\right)\)
\(B=\frac{2009}{2009}+\frac{2009}{2}+\frac{2009}{3}+...+\frac{2009}{2007}+\frac{2009}{2008}\)
\(B=2009\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2007}+\frac{1}{2008}+\frac{1}{2009}\right)\)
\(\Rightarrow\)\(\frac{A}{B}=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2007}+\frac{1}{2008}+\frac{1}{2009}}{2009\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2007}+\frac{1}{2008}+\frac{1}{2009}\right)}=\frac{1}{2009}\)
Vậy \(\frac{A}{B}=\frac{1}{2009}\)
Chúc bạn học tốt ~
\(\Rightarrow\frac{x-1}{2011}+\frac{x-2}{2010}+\frac{x-3}{2009}=0\)
\(\Rightarrow\frac{x-1}{2011}-1+\frac{x-2}{2010}-1+\frac{x-3}{2009}-1+\frac{x-4}{2008}-1=0\)
\(\Rightarrow\left(\frac{x-1}{2011}-1\right)+\left(\frac{x-2}{2010}-1\right)+\left(\frac{x-3}{2009}-1\right)+\left(\frac{x-4}{2008}-1\right)=0\)
\(\Rightarrow\frac{x-2012}{2011}+\frac{x-2012}{2010}+\frac{x-2012}{2009}+\frac{x-2012}{2008}=0\)
\(\Rightarrow\left(x-2012\right)\cdot\left(\frac{1}{2011}+\frac{1}{2010}+\frac{1}{2009}+\frac{1}{2008}\right)\)
Vì \(\frac{1}{2011}< \frac{1}{2009}\) và \(\frac{1}{2010}< \frac{1}{2008}\) nên \(\frac{1}{2011}+\frac{1}{2010}+\frac{1}{2009}+\frac{1}{2008}\ne0\)
\(\rightarrow x-2012=0\)
\(\rightarrow x=2012\)
Vậy x = 2012.
\(\frac{x-1}{2011}+\frac{x-2}{2012}=\frac{x-3}{2013}+\frac{x-4}{2014}\)
\(\frac{x-1}{2011}+1+\frac{x-2}{2012}+1=\frac{x-3}{2013}+1+\frac{x-4}{2014}+1\)
\(\Rightarrow\frac{x+2010}{2011}+\frac{x+2010}{2012}=\frac{x+2010}{2013}+\frac{x+2010}{2014}\)
\(\Rightarrow\left(x+2010\right)\left(\frac{1}{2011}+\frac{1}{2012}-\frac{1}{2013}-\frac{1}{2014}\right)=0\)
\(\frac{1}{2011}+\frac{1}{2012}-\frac{1}{2013}-\frac{1}{2014}>0\)
\(\Leftrightarrow x+2010=0\Rightarrow x=-2010\)
Bạn tiếp tục áp dụng phương pháp này vào bài 2 nha nhưng bài b bạn sẽ trừ 1 ở mỗi thức
\(a)\) \(\frac{x-1}{2011}+\frac{x-2}{2012}=\frac{x-3}{2013}+\frac{x-4}{2014}\)
\(\Leftrightarrow\)\(\left(\frac{x-1}{2011}+1\right)+\left(\frac{x-2}{2012}+1\right)=\left(\frac{x-3}{2013}+1\right)+\left(\frac{x-4}{2014}+1\right)\)
\(\Leftrightarrow\)\(\frac{x-1+2011}{2011}+\frac{x-2+2012}{2012}=\frac{x-3+2013}{2013}+\frac{x-4+2014}{2014}\)
\(\Leftrightarrow\)\(\frac{x-2010}{2011}+\frac{x+2010}{2012}=\frac{x+2010}{2013}+\frac{x+2010}{2014}\)
\(\Leftrightarrow\)\(\frac{x-2010}{2011}+\frac{x+2010}{2012}-\frac{x+2010}{2013}-\frac{x+2010}{2014}=0\)
\(\Leftrightarrow\)\(\left(x-2010\right)\left(\frac{1}{2011}+\frac{1}{2012}-\frac{1}{2013}-\frac{1}{2014}\right)=0\)
Vì \(\frac{1}{2011}+\frac{1}{2012}-\frac{1}{2013}-\frac{1}{2014}\ne0\)
Nên \(x-2010=0\)
\(\Rightarrow\)\(x=2010\)
Vậy \(x=2010\)
Chúc bạn học tốt ~
\(|x-\frac{1}{3}|=|\left(-3.2\right)+\frac{2}{5}|\)
\(\Rightarrow|x-\frac{1}{3}|=|-3.2+0.4|\)
\(\Rightarrow|x-\frac{1}{3}|=|-2.8|\)
\(\Rightarrow|x-\frac{1}{3}|=2.8\)
\(\Rightarrow\orbr{\begin{cases}x-\frac{1}{3}=2.8\\x-\frac{1}{3}=-2.8\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x=\frac{43}{15}\\x=-\frac{41}{15}\end{cases}}\)
tính lại kết quả nhé
\(B=\frac{2001}{1}+\frac{2010}{2}+\frac{2009}{3}+...+\frac{2}{2010}+\frac{1}{2001}\)
\(B=\left(2011-1-...-1\right)+\left(\frac{2010}{2}+1\right)+\left(\frac{2009}{3}+1\right)+...+\left(\frac{1}{2011}+1\right)\)
\(B=\frac{2012}{2}+\frac{2012}{3}+...+\frac{2012}{2011}+\frac{2012}{2012}\)
\(B=2012\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2011}+\frac{1}{2012}\right)\)
\(\Rightarrow\)\(\frac{B}{A}=\frac{2012\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2011}+\frac{1}{2012}\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2011}+\frac{1}{2012}}=2012\)
Vậy \(\frac{B}{A}=2012\)
Chúc bạn học tốt ~
1) \(\frac{x+1}{15}+\frac{x+2}{14}=\frac{x+3}{13}+\frac{x+4}{12}\)
\(\Leftrightarrow\frac{x+16}{15}+\frac{x+16}{14}-\frac{x+16}{13}-\frac{x+16}{12}=0\)
\(\Leftrightarrow\left(x+16\right)\left(\frac{1}{15}+\frac{1}{14}-\frac{1}{13}-\frac{1}{12}\right)=0\)
\(\Leftrightarrow x=-16\)
2)3)4) tương tự
Gợi ý : 2) cộng 3 vào cả hai vế
3)4) cộng 2 vào cả hai vế
5) \(\frac{x+1}{20}+\frac{x+2}{19}+\frac{x+3}{18}=-3\)
\(\Leftrightarrow\frac{x+21}{20}+\frac{x+21}{19}+\frac{x+21}{18}=0\)
\(\Leftrightarrow\left(x+21\right)\left(\frac{1}{20}+\frac{1}{19}+\frac{1}{18}\right)=0\)
\(\Leftrightarrow x=-21\)
6) sửa VT = 4 rồi tương tự câu 5)