Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi 4 số tự nhiên liên tiếp là n , n + 1 , n + 2 , n + 3 , n + 4 ( \(n\inℕ\))
Ta có : \(A=n\left(n+1\right)\left(n+2\right)\left(n+3\right)\left(n+4\right)\)
Giả sử A là một số chính phương .
Vì A là đa thức bậc 4 với hệ số bậc cao nhất là 1 nên ta có :
\(A=n\left(n+1\right)\left(n+2\right)\left(n+3\right)\left(n+4\right)=\left(n^2+an+b\right)^2\)
\(\Rightarrow n^4+6n^3+11n^2+6n+1=n^4+2an^3+\left(a^2+2b\right)n^2+2abn+b^2\)
Đồng nhất 2 vế ta được :
\(\hept{\begin{cases}2a=6;a^2+2b=11\\2ab=6;b^2=1\end{cases}}\Rightarrow\hept{\begin{cases}a=3\\b=1\end{cases}}\)
Vậy \(n\left(n+1\right)\left(n+2\right)\left(n+3\right)\left(n+4\right)=\left(n^2+3n+1\right)^2\forall n\). Ta có điều phải chứng minh.
QTV sai r nhé :))
Gọi 4 stn lt là \(a,a+1,a+2,a+3\left(a\inℕ\right)\)
Xét \(A=a\left(a+1\right)\left(a+2\right)\left(a+3\right)+1\)
\(=a\left(a+3\right)\left(a+1\right)\left(a+2\right)+1\)
\(=\left(a^2+3a\right)\left(a^2+3a+2\right)+1\)
\(=\left(a^2+3a+1\right)^2-1+1=\left(a^2+3a+1\right)^2\)(ĐPCM)
Goi 4 số tự nhiên liên tiếp lần lượt là x, x+1, x+2, x+3 (\(x\in N\))
Ta sẽ chứng minh \(x\left(x+1\right)\left(x+2\right)\left(x+3\right)+1\)là một số chính phương.
Ta có : \(x\left(x+1\right)\left(x+2\right)\left(x+3\right)+1=\left[x\left(x+3\right)\right].\left[\left(x+1\right)\left(x+2\right)\right]+1\)
\(=\left(x^2+3x\right)\left(x^2+3x+2\right)+1=\left(x^2+3x\right)\left[\left(x^2+3x\right)+2\right]+1\)
\(=\left(x^2+3x\right)^2+2.\left(x^2+3x\right)+1=\left(x^2+3x+1\right)^2\)là một số chính phương.
Vậy ta có điều phải chứng minh.
Có: \(\left(x^2+3x+1\right)^2-1=\left(x^2+3x\right)\left(x^2+3x+2\right)=x\left(x+1\right)\left(x+2\right)\left(x+3\right).\)
Ngược lại:
\(x\left(x+1\right)\left(x+2\right)\left(x+3\right)+1=\left(x^2+3x+1\right)^2-1+1=\left(x^2+3x+1\right)^2\)là scp
dat 4 so tn lie tiep co dang la a,a+1,a+2,a+3
a(a+1)(a+2)(a+3)+1=(a^2+3a)(a^2+3a+2)+1
=(a^2+3a+1-1)(a^2+3a+1+1)+1
(a^2+3a+1)^2-1+1=(a^2+3a+1)^2 la so cp
gọi 4 số tự nhiên liên tiếp là a;a+1;a+2;a+3. điều kiện : a\(\in\)N .
Ta xét: a(a+1)(a+2)(a+3) +1 = [a(a+3)][(a+1)(a+2)] +1
= (a2+3a)(a2+3a+2) +1
= (a2+3a+1-1)(a2+3a+1+1) +1
= (a2+3a+1)2 - 1+1
= (a2+3a+1)2 => Điều phải chứng minh
Gọi 4 số tự nhiên, liên tiếp đó là n, n+1, n+2, n+3\(\left(n\in N\right)\)
Theo đề bài ra chúng ta có : n(n+1)(n+2)(n+3) + 1 = n.(n+3)(n+1)(n+2)+1
= (n2+3n)(n2+3n+2)+ 1 (*) Đặt n2+3n = t\(\left(t\in N\right)\)thì (*) = t(t+2)+1 = t2+2t+1 = (t+1)2
= (n2+3n+1)2 Vì\(n\in N\)nên suy ra : (n2+3n+1)\(\in N\)
=> Vậy n(n+1)(n+2)(n+3) là 1 số chính phương.
Gọi 4 số đó là a ; a+1 ; a+2 ; a+3
a(a+1)(a+2)(a+3)+1=(a(a+3))((a+1)(a+2))+1=(a2+3a)(a2+3a+2)+1
Đặt b=a2+3a
b(b+2)+1=b2+2b+1=(b+1)2 chính phương
Đặt 4 số tự nhiên liên tiếp là: n-1;n;n+1;n+2( n>0)
Ta có:
\(\left(n-1\right)n\left(n+1\right)\left(n+2\right)+1=\left(n^2+n\right)\left(n^2+n-2\right)+1.\)
Gọi t = n2+n ta có:
\(t\left(t-2\right)+1=t^2-2t+1=\left(t-1\right)^2\)
\(=\left(n^2+n\right)^2\left(ĐPCM\right)\)
\(\text{Vậy ..........}\)
Gọi 4 stn liên tiếp là x;x+1;x+2;x+3 (x thuộc N)
Đặt A=\(x\left(x+1\right)\left(x+2\right)\left(x+3\right)+1=x\left(x+3\right)\left(x+1\right)\left(x+2\right)+1=\left(x^2+3x\right)\left(x^2+3x+2\right)+1\)
Đặt x2+3x+1=t, ta có:
\(A=\left(t-1\right)\left(t+1\right)+1=t^2-1+1=t^2=\left(x^2+3x+1\right)^2\)
=>đpcm
Gọi 4 số tự nhiên chẵn liên tiếp đó lần lượt là x; x+2; x+4; x+6. Ta có:
x(x+2)(x+4)(x+6) + 16
= x(x+6)(x+2)(x+4) + 16
= ( x2 + 6x)( x2+6x+8) + 16 (*)
Đặt x2 + 6x= a. Thay vào (*) ta lại có
(*) = a (a+8) + 16= a2 + 8a + 16= ( a+4)2
Thay a= x2 + 6x vào ta có:
(*)= ( x2 + 6x + 4)2
Do x là số tự nhiên nên \(x^2+6x+4\) cũng là một số tự nhiên.
Vậy tổng của tích 4 số tự nhiên chẵn liên tiếp với 16 là 1 số chính phương
BÀI GIẢI
Gọi 4 số liên tiếp là 2a ; 2a + 2 ; 2a + 4 ; 2a + 6.
Tích của chúng là 2a(2a + 2)(2a + 4)(2a + 6)
Ta có :
A = 2a(2a + 2)(2a + 4)(2a + 6) + 16
A = (4a^2 +4a)(4a^2 + 12a + 8a + 24) + 16
A = (4a^2 +4a)(4a^2 + 20a + 24) + 16
A = 16a^4 + 80a^3 + 96a^2 + 16a^3 + 80a^2 + 96a +16
A = 16a^4 + 96a^3 + 176a^2 + 96a +16
A = 16a^4 + 48a^3 + 16a^2 + 48a^3 + 144a^2 + 48a + 16a^2 + 48a +16
A = (4a^2 + 12a + 4)(4a^2 + 12a + 4)
A = (4a^2 + 12a + 4)^2 (1)
Vì a thuộc N nên 4a^2 + 12a + 4 thuộc N (2)
(1)(2)=> A là số chính phương
=> Đpcm
Đề: Chứng minh tích của 4 số tự nhiên liên tiếp cộng 1 luôn cho ta 1 kết quả là 1 số chính phương
Gọi 4 số tự nhiên liên tiếp là a ; a + 1 ; a + 2 ; a + 3
a(a + 3)(a + 1)(a + 2) + 1
= (a2 + 3a)(a2 + 3a + 2) + 1
Đặt a2 + 3a = t, ta có:
t(t + 2) + 1
= t2 + 2t + 1
= (t + 1)2 (đpcm)
thanks